首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gait patterns of the elderly are often adjusted to accommodate for reduced function in the balance control system and a general reduction in skeletal muscle strength. Recent studies have demonstrated that measures related to motion of whole body center of mass (COM) can distinguish elderly individuals with balance impairment from healthy peers. Accurate COM estimation requires a multiple-segment anthropometric model, which may restrict its broad application in assessment of dynamic instability. Although temporal-distance measures and electromyography have been used in evaluation of overall gait function and determination of gait dysfunction, no studies have examined the use of gait measurements in predicting COM motion during gait. The purpose of this study was to demonstrate the effectiveness of an artificial neural network (ANN) model in mapping gait measurements onto COM motion in the frontal plane. Data from 40 subjects of varied age and balance impairment were entered into a 3-layer feed-forward model with back-propagated error correction. Bootstrap re-sampling was used to enhance the generalization accuracy of the model, using 20 re-sampling trials. The ANN model required minimal processing time (5 epochs, with 20 hidden units) and accurately mapped COM motion (R-values up to 0.89). As training proportion and number of hidden units increased, so did model accuracy. Overall, this model appears to be effective as a mapping tool for estimating balance control during locomotion. With easily obtained gait measures as input and a simple, computationally efficient architecture, the model may prove useful in clinical scenarios where electromyography equipment exists.  相似文献   

2.
The ability of the central nervous system to control posture and balance has been used with increasing frequency for the diagnosis and/or treatment evaluation of various neuromuscular diseases. Typically this analysis (Posturographic Analysis) is based on tracking the motion of the center of mass (COM) during quiet standing, however direct measurement of the COM has been commonly approximated using the movement of the center of pressure (COP). The purpose of this study was to apply and validate a new method to track the COM (center of mass) and COP (center of pressure) from a visual hull measured using a markerless motion capture (MMC) method. The method was tested by comparing the calculation of the COP from direct measurements of the COP. The deviations between the methods, below 2 mm, were small relative to the average range of movement guaranteeing a satisfactory signal to noise ratio. This new method requires only kinematic data through MMC method and without the need of a force plate can identify the influence of individual body segments to motion of the COM.  相似文献   

3.
The purpose of this study was to establish the region of stability of balance control using the center of mass (COM) acceleration and to characterize age-related differences during sit-to-stand (STS) movement. Whole body motion data were collected from 10 young and 10 elderly subjects while performing STS at their self-selected manners. In addition, young subjects were asked to perform another block of trials with their trunk purposely bent forward prior to seat-off. With the use of a single-link-plus-foot inverted pendulum model, boundaries for the region of stability were determined based on the COM position at seat-off and its instantaneous velocity or its peak acceleration (ROSv or ROSa, respectively). No significant group differences were detected in COM velocities at seat-off. However, peak COM accelerations differed significantly between groups and conditions. This suggested that even though a similar COM momentum was observed at seat-off, this momentum was controlled differently prior to seat-off. Young and elderly subjects utilized similar strategies but with different COM acceleration profiles to perform STS. Furthermore, data from an elderly subject who complained of difficulty in STS during the experiment were located outside the forward boundary of the ROSa, demonstrating a potential use of ROSa to differentiate individuals with declined balance control ability. The ROSa could provide insights into how the COM is controlled prior to seat-off, which may allow us to better identify elderly individuals who are most likely at a risk for imbalance or falls.  相似文献   

4.
Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm.  相似文献   

5.
Compared to static balance, dynamic balance requires a more complex strategy that goes beyond keeping the center of mass (COM) within the base of support, as established by the range of foot center of pressure (COP) displacement. Instead, neuromechanics must accommodate changing support conditions and inertial effects. Therefore, because they represent body's position and changes in applied moments, relative COM and COP displacements may also reveal dynamic postural strategies. To investigate this concept, kinetics and kinematics were recorded during three 12 cm, 1.25 Hz, sagittal perturbations. Forty-one individual trials were classified according to averaged cross-correlation lag between COM and COP displacement (lag(COM:COP)) and relative head-to-ankle displacement (Δ(head)/Δ(ankle)) using a k-means analysis. This process revealed two dominant patterns, one for which the lag(COM:COP) was positive (Group 1 (n=6)) and another for which it was negative (Group 2 (n=5)) . Group 1 (G1) absorbed power from the platform over most of the cycle, except during transitions in platform direction. Conversely, Group 2 (G2) participants applied power to the platform to maintain a larger margin between COM and COP position and also had larger knee flexion and ankle dorsiflexion, resulting in a lower stance. By the third repetition, the only kinematic differences were a slightly larger G2 linear knee displacement (p=0.008) and an antiphasic relationship of pelvis (linear) and trunk (angular) displacements. Therefore, it is likely that the strategy differences were detected by including COP in the initial screening method, because it reflects the pattern of force application that is not detectable by tracking body movements.  相似文献   

6.
Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP) or center-of-mass (COM) fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC) is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( =  limits of the region of feasible COP or COM displacement) and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC), a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a predictive model of postural instability during upright stance.  相似文献   

7.
This study analyzed gait initiation (GI) on inclined surfaces with 68 young adult subjects of both sexes. Ground reaction forces and moments were collected using two AMTI force platforms, of which one was in a horizontal position and the other was inclined by 8% in relation to the horizontal plane. Departing from a standing position, each participant executed three trials in the following conditions: horizontal position (HOR), inclined position at ankle dorsi-flexion (UP), and inclined position at ankle plantar-flexion (DOWN). Statistical parametric mapping analysis was performed over the entire center of pressure (COP) and center of mass (COM) time series. COP excursion did not show significant differences in the medial-lateral (ML) direction in both inclined conditions, but it was greater in the anterior-posterior (AP) direction for both inclined conditions. COP velocities are smaller in discrete portions of GI for the UP and DOWN conditions. COM displacement was greater in the ML direction during anticipatory postural adjustments (APA) in the UP condition, and COM moves faster in the ML direction during APA in the UP condition but slower at the end of GI for both the UP and the DOWN conditions. The COP-COM vector showed a greater angle in the DOWN condition. We observed changes for COP and COM in GI in both the UP and the DOWN conditions, with the latter showing changes for a great extent of the task. Both the UP and the DOWN conditions showed increased COM displacement and velocity. The predominant characteristic during GI on inclined surfaces, including APA, appears to be the displacement of the COM.  相似文献   

8.
An inability to recover lateral balance with a single step is predictive of future falls in older adults. This study investigated if balance stability at first step lift-off (FSLO) would be different between multiple and single stepping responses to lateral perturbations. 54 healthy older adults received left and right waist-pulls at 5 different intensities (levels 1–5). Crossover stepping responses at and above intensity level 3 that induced both single and multiple steps were analyzed. Whole-body center of mass (COM) and center of pressure (COP) positions in the medio-lateral direction with respect to the base of support were calculated. An inverted pendulum model was used to define the lateral stability boundary, which was also adjusted using the COP position at FSLO (functional boundary). No significant differences were detected in the COP positions between the responses at FSLO (p  0.075), indicating no difference in the functional boundaries between the responses. Significantly smaller stability margins were observed at first step landing for multiple steps at all levels (p  0.024), while stability margins were also significantly smaller at FSLO for level 3 and 4 (p  0.048). These findings indicate that although reduced stability at first foot contact would be associated with taking additional steps, stepping responses could also be attributable to the COM motion state as early as first step lift-off, preceding foot contact. Perturbation-based training interventions aimed at improving the reactive control of stability would reduce initial balance instability at first step lift-off and possibly the consequent need for multiple steps in response to balance perturbations.  相似文献   

9.
《Zoology (Jena, Germany)》2014,117(4):269-281
Studies of center of mass (COM) motion are fundamental to understanding the dynamics of animal movement, and have been carried out extensively for terrestrial and aerial locomotion. But despite a large amount of literature describing different body movement patterns in fishes, analyses of how the center of mass moves during undulatory propulsion are not available. These data would be valuable for understanding the dynamics of different body movement patterns and the effect of differing body shapes on locomotor force production. In the present study, we analyzed the magnitude and frequency components of COM motion in three dimensions (x: surge, y: sway, z: heave) in three fish species (eel, bluegill sunfish, and clown knifefish) swimming with four locomotor modes at three speeds using high-speed video, and used an image cross-correlation technique to estimate COM motion, thus enabling untethered and unrestrained locomotion. Anguilliform swimming by eels shows reduced COM surge oscillation magnitude relative to carangiform swimming, but not compared to knifefish using a gymnotiform locomotor style. Labriform swimming (bluegill at 0.5 body lengths/s) displays reduced COM sway oscillation relative to swimming in a carangiform style at higher speeds. Oscillation frequency of the COM in the surge direction occurs at twice the tail beat frequency for carangiform and anguilliform swimming, but at the same frequency as the tail beat for gymnotiform locomotion in clown knifefish. Scaling analysis of COM heave oscillation for terrestrial locomotion suggests that COM heave motion scales with positive allometry, and that fish have relatively low COM oscillations for their body size.  相似文献   

10.
Prominent conservative treatment options for medial-compartment knee osteoarthritis include footwear that reduces knee adduction moment (KAM) correlated with detrimental loads in the medial compartment of the knee, thus providing clinical benefit. The proposed mechanism by which they reduce KAM is a lateral shift in foot center of pressure (COP) and a consequent shortening of the knee lever arm (KLA), thereby reducing KAM, which can be simply calculated as KLA multiplied by the frontal plane ground reaction force (FP-GRF). The present study investigated this mechanism for a unique biomechanical device capable of shifting COP by means of moveable convex elements attached to the shoe. Fourteen healthy young male subjects underwent gait analysis in two COP configurations of the device for comparison: (1) laterally and (2) medially deviated. Average midstance KLA and KAM were decreased by 8.2% and 8.7%, respectively, in the lateral COP compared to medial. Ground reaction force parameters, frontal plane knee angle (FP-KA), and spine lateral flexion angle (SLF) did not differ between COP configurations. No study parameters differed for terminal stance. Linear mixed effects models showed that COP and FP-GRF components, but not FP-KA and SLF, were significant predictors of KLA. In addition, KLA and FP-GRF were significant predictors of KAM; although, FP-GRF did not change significantly with medio-lateral COP shift, while KLA did. This suggests that the mechanism by which the study device reduces KAM is primarily through shortening of KLA brought on by a lateral shift in COP.  相似文献   

11.
Lee HJ  Chou LS 《Journal of biomechanics》2007,40(11):2530-2536
Stair negotiation is among the most challenging and hazardous types of locomotion for older people. However, the effect of aging on balance control during stair negotiation has not been investigated. Instantaneous inclination angles between the center of mass (CoM) and center of pressure (CoP) have been reported to detect gait instability effectively in the elderly. The purpose of this study was to compare the CoM-CoP inclination angles between 12 healthy elderly and 13 healthy young adults when performing stair ascent (SA) and descent (SD) on a three-step staircase. Whole body motion data were collected with an eight-camera motion analysis system. Four force plates were mounted on the floor as well as the first two steps to measure ground reaction forces. No significant group differences were detected in any of the temporal-distance gait measures and CoM-CoP inclination angles during SA and SD. Compared to the floor-to-stair transition phase, both groups demonstrated a significantly greater CoM-CoP medial inclination angle while ascending the stairs. However, a significant reduction in medial inclination was only detected in young adults when transferring from SD to level ground walking. Elderly adults were found to demonstrate a significantly greater medial inclination angle during the stair-to-floor transition phase when compared to young adults. Age-related degenerations in the elderly could compromise their ability to regulate body sway during the stair-to-floor transition, which may subsequently increase the risk of falling.  相似文献   

12.
Evaluation of postural control is generally based on the interpretation of the center of pressure (COP) and the center of mass (COM) time series. The purpose of this study is to compare three methods to estimate the COM which are based on different biomechanical considerations. These methods are: (1) the kinematic method; (2) the zero-point-to-zero-point double integration technique (GLP) and (3) the COP low-pass filter method (LPF). The COP and COM time series have been determined using an experimental setup with a force plate and a 3D kinematic system on six healthy young adult subjects during four different 30 s standing tasks: (a) quiet standing; (b) one leg standing; (c) voluntary oscillation about the ankles and (d) voluntary oscillation about the ankles and hips. To test the difference between the COM trajectories, the root mean square (RMS) differences between each method (three comparisons) were calculated. The RMS differences between kinematic-LPF and GLP-LPF are significantly larger than kinematic-GLP. Our results show that the GLP method is comparable to the kinematic method. Both agree with the unified theory of balance during upright stance. The GLP method is attractive in the clinical perspective because it requires only a force plate to determine the COP-COM variable, which has been demonstrated to have a high reliability.  相似文献   

13.
Despite widespread acceptance of clinical benefits, empirical evidence to evaluate the advantages and limitations of ambulation aids for balance control is limited. The current study investigates the upper limb biomechanical contributions to the control of frontal plane stability while using a 4-wheeled walker in quiet standing. We hypothesized that: (1) upper limb stabilizing moments would be significant, and (2) would increase under conditions of increased stability demand. Factors influencing upper limb moment generation were also examined. Specifically, the contributions of upper limb center-of-pressure (COP(hands)), vertical and horizontal loads applied to the assistive device were assessed. The results support a significant mechanical role for the upper limbs, generating 27.1% and 58.8% of overall stabilizing moments under baseline and challenged stability demand conditions, respectively. The increased moment was achieved primarily through the preferential use of phasic upper limb control, reflected by increased COP(hands) (baseline vs. challenged conditions: 0.29 vs. 0.72cm). Vertical, but not horizontal, was the primary force direction contributing to stabilizing moments in quiet standing. The key finding that the upper limbs play an important role in effecting frontal plane balance control has important implications for ambulation aid users (e.g., elderly, stroke, and traumatic brain injury).  相似文献   

14.
This study aimed to determine if combined exercise intervention improves physical performance and gait joint-kinematics including the joint angle and dynamic range of motion (ROM) related to the risk of falling in community-dwelling elderly women. A 12-week combined exercise intervention program with extra emphasis on balance, muscle strength, and walking ability was designed to improve physical performance and gait. Twenty participants attended approximately two-hour exercise sessions twice weekly for 12 weeks. Participants underwent a physical performance battery, including static balance, sit and reach, whole body reaction time, 10 m obstacle walk, 10 m maximal walk, 30-second chair stand, to determine a physical performance score, and received quantitative gait kinematics measurements at baseline and in 12 weeks. Significant lower extremity strength improvement 13.5% (p<.001) was observed, which was accompanied by significant decreases in time of the 10 m obstacle walk (p<.05) and whole body reaction time (p<.001) in this study. However, no significant differences were seen for static balance and flexibility from baseline. For gait kinematics, in the mid-swing phase, knee and hip joint angle changed toward flexion (p<.01, p<.05, respectively). Ankle dynamic ROM significantly increased (p<.05) following exercise intervention. The plantar flexion angle of the ankle in the toe-off phase was increased significantly (p<.01). However, other gait parameters were not significantly different from baseline. These findings from the present investigation provide evidence of significant improvements in physical performance related to the risk factors of falling and safe gait strategy with a combined exercise intervention program in community-dwelling elderly women. The results suggest this exercise intervention could be an effective approach to ameliorate the risk factors for falls and to promote safer locomotion in elderly community-dwelling women.  相似文献   

15.
The purpose of the study was to characterize the Balance-Dexterity Task as a means to investigate a concurrent bipedal lower-extremity task and trunk control during dynamic balance. The task combines aspects of single-limb balance and the lower-extremity dexterity test by asking participants to stand on one limb while compressing an unstable spring with the contralateral limb to an individualized target force. Nineteen non-disabled participants completed the study, and performance measures for the demands of each limb – balance and dexterous force control – as well as kinematic and electromyographic measures of trunk control were collected. Given five practice trials, participants achieved compression forces ranging from 100 to 139 N (mean 121.2 ± 12.3 N), representing 14.4–23.0% of body weight (mean 18.7 ± 2.4%), which were then presented as target forces during test trials. Dexterous force control coefficient of variation and average magnitude of the center of pressure (COP) resultant velocity were associated such that greater variability in force control was accompanied by greater COP velocity (R = 0.598, p = 0.007). Trunk coupling, quantified as the coefficient of determination (R2) of a frontal plane thorax and pelvis angle-angle plot, varied independently of any measure of balance or dexterous force control. The Balance-Dexterity Task is a continuous, dynamic balance task where bipedal coordination and trunk coupling can be concurrently observed and studied.  相似文献   

16.
Examining whole-body center of mass (COM) motion is one of method being used to quantify dynamic balance and energy during gait. One common method for estimating the COM position is to apply an anthropometric model to a marker set and calculate the weighted sum from known segmental COM positions. Several anthropometric models are available to perform such a calculation. However, to date there has been no study of how the anthropometric model affects whole-body COM calculations during gait. This information is pertinent to researchers because the choice of anthropometric model may influence gait research findings and currently the trend is to consistently use a single model. In this study we analyzed a single stride of gait data from 103 young adult participants. We compared the whole-body COM motion calculated from 4 different anthropometric models (Plagenhoef et al., 1983; Winter, 1990; de Leva, 1996; Pavol et al., 2002). We found that anterior-posterior motion calculations are relatively unaffected by the anthropometric model. However, medial-lateral and vertical motions are significantly affected by the use of different anthropometric models. Our findings suggest that the researcher carefully choose an anthropometric model to fit their study populations when interested in medial-lateral or vertical motions of the COM. Our data can provide researchers a priori information on the model determination depending on the particular variable and how conservative they may want to be with COM comparisons between groups.  相似文献   

17.
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee–ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients.  相似文献   

18.
Iqbal K  Pai Y 《Journal of biomechanics》2000,33(12):3446-1627
Earlier experimental studies on balance recovery following perturbation have identified two discrete strategies commonly employed by humans, i.e. hip and ankle strategies. It has hence been implied that the knee joint plays a relatively minor role in balance recovery. The purpose of this study was to determine whether the size of the feasible stability region (FSR) would be affected by allowing knee motion in sagittal plane movement termination. The FSR was defined as the feasible range of anterior velocities of the center of mass (COM) of a human subject that could be reduced to zero with the final COM position within the base of support (BOS) limits. The FSR was computed using a four-segment biomechanical model and optimization routine based on Simulated Annealing algorithm for three scenarios: unrestricted knee motion (UK), restricted knee motion (RK), and unrestricted knee motion with an initial posture that matches RK (UKM). We found that movement termination could benefit little from UK condition when the COM (xCOM) was initially located in the forefoot region [0.00 (toe) >xCOM−0.50 (mid-foot)] with no more than a 17% increase in FSR compared to RK. The effect of knee motion increased in the rear foot region with a 25% increase in FSR at xCOM=−1 (heel). Close to half of this difference (12%) was attributable to the knee-related restriction on initial posture and the rest to movement termination per se. These findings illustrated a theoretical role of knee motion in standing humans’ repertoire of effective posture responses, which include hip and ankle strategies and their variants for balance recovery with stationary BOS.  相似文献   

19.
The biomechanical mechanisms of loss of balance have been studied before for slip condition but have not been investigated for arbitrary perturbation profiles under non-slip conditions in sagittal plane. This study aimed to determine the thresholds of center of mass (COM) velocity and position relative to the base of support (BOS) that predict forward and backward loss of balance during walking with a range of BOS perturbations. Perturbations were modeled as sinusoidal BOS motions in the vertical or anterior-posterior direction or as sagittal rotation. The human body was modeled using a seven-link model. Forward dynamics alongside with dynamic optimization were used to find the thresholds of initial COM velocity for each initial COM position that would predict forward or backward loss of balance. The effects of perturbation frequency and amplitude on these thresholds were modeled based on the simulation data. Experimental data were collected from 15 able-bodied individuals and three individuals with disability during perturbed walking. The simulation results showed similarity with the stability region reported for slip and non-slip conditions. The feasible stability region shrank when the perturbation frequency and amplitude increased, especially for larger initial COM velocities. 89.5% (70.9%) and 82.4% (68.2%) of the measured COM position and velocity combinations during low (high) perturbations were located inside the simulated limits of the stability region, for able-bodied and disabled individuals, respectively. The simulation results demonstrated the effects of different perturbation levels on the stability region. The obtained stability region can be used for developing rehabilitative programs in interactive environments.  相似文献   

20.
The purposes of this study were: (1) to determine the frequency of protective stepping for balance recovery in subjects of different ages and fall-status, and (2) to compare predicted stepping based on a dynamic model (Pai and Patton, 1997. Journal of Biomechanics 30, 347–354) involving displacement and velocity combinations of the center of mass (COM) versus a static model based on displacement alone against experimentally induced stepping. Responses to three different magnitudes of forward waist pulls were recorded for 13 young, 18 older-non-fallers and 18 older-fallers. The COM phase plane trajectories derived from motion analysis were compared with the model-predicted threshold values for stepping. We found that the older fallers had the highest percentage of stepping trials (52%), followed by older-non-fallers (17.3%), and young (2.7%) at the lowest perturbation level. Younger subjects stepped less often than the elderly at the middle level. Everyone consistently stepped at the highest level of perturbation. Overall, the dynamic model showed better predictive capacity (65%) than the static model (5%) for estimating the initiation of stepping. Furthermore, the threshold for step initiation derived from the dynamic model could consistently predict when a step must occur. However, it was limited, especially among older fallers at the low perturbation level, in that it considered some steps ‘unnecessary’ that were presumably triggered by fear of falling or other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号