首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

2.
A pterocarpan and two isoflavans from alfalfa   总被引:4,自引:0,他引:4  
(−)6aR,11aR-Dihydro-3-hydroxy-9,10-dimethoxy-6H-benzofuro[3,2c] [1]-benzopyran (10-methoxymedicarpin), (+)-(2,3,4,-trimethoxyphenyl)-2,3-dihydro-7-hydroxy-4H-1-benzopyran (7-hydroxy-2′,3′,4′-trimethoxyisoflavan) and (+)-(2,3,4-trimethoxy-5-hydroxyphenyl)-2,3-dihydro-7-hydroxy-4H-1-benzopyran (7,5′-dihydroxy-2′,3′,4′-trimethoxyisoflavan) were isolated for the first time from dried Medicago sativa hay. Structural assignments were based on 1H NMR and mass spectra, X-ray crystallography, and optical rotations.  相似文献   

3.
A crtD (1-HO carotenoid 3,4-dehydrogenase gene) homolog from marine bacterium strain P99-3 included in the gene cluster for the biosynthesis of myxol (3,4-didehydro-1,2-dihydro-β,ψ-carotene-3,1,2-triol) was functionally identified. The P99-3 CrtD was phylogenetically distant from the other CrtDs. A catalytic feature was its high activity for the monocyclic carotenoid conversion: 1-HO-torulene (3,4-didehydro-1,2-dihydro-β,ψ-caroten-1-ol) was prominently formed from 1-HO-γ-carotene (1,2-dihydro-β,ψ-caroten-1-ol) in Escherichia coli with P99-3 CrtD, indicating that this enzyme has been highly adapted to myxol biosynthesis. This unique type of crtD is a valuable tool for obtaining 1-HO-3,4-didehydro monocyclic carotenoids in a heterologous carotenoid production system.  相似文献   

4.
Epidemiological studies testing the effect of β-carotene in humans have found a relative risk for lung cancer in smokers supplemented with β-carotene. We investigated the reactions of retinal and β-apo-8′-carotenal, two β-carotene oxidation products, with 2′-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2′-deoxyguanosine, was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of 1,N2-etheno-2′-deoxyguanosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine were quantified in DNA. These lesions are believed to be important in the development of human cancers. The results reported here may contribute toward an understanding of the biological effects of β-carotene oxidation products.  相似文献   

5.
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2′,5′-oligoadenylate synthetase (2′,5′-OAS), which converts ATP to 2′,5′-linked oligoadenylates with the unusual 2′-5′ instead of 3′-5′ phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2′,5′-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69–71 and 100 kDa forms of the 2′,5′-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2′-5′OAS forms 2′,5′-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.  相似文献   

6.
To develop an optimal bioprocess for secondary metabolite production and explain the bioprocess at the molecular level, we examine the synergistic effects of sequential treatment with methyl jasmonate (MJ), salicylic acid (SA) and yeast extract (YE) on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Serial treatment of MJ, SA and YE at 24 h intervals enhanced the accumulation of dihydrosanguinarine (2.5 times) and sanguinarine (5.5 times). This sequential treatment using different signal elicitors was more effective than single elicitor or simultaneous treatment of the elicitors; it induced benzophenanthridine alkaloid accumulation to 917.7 ± 42.0 mg/L. Also, (S)-methylcoclaurine-3′-hydroxylase (CYP80B1) and 3′-hydroxy-(S)-N-methylcoclaurine-4′-O-methyltransferase (4′OMT) expressions among enzymes in sanguinarine biosynthetic pathway explained the synergistic effects by sequential treatment of the elicitors. The sequential treatment strategy using elicitors related to different signal transduction pathways can be used to design better processes to increase accumulation of secondary metabolites in plant cell culture. Analysis of protein expression provides the detailed information about metabolite accumulation through the correlated results.  相似文献   

7.
A new neolignan, 5,8-epoxy-6,7-dimethyl 2′,3′,2″,3″-dimethylene dioxy-4′,1″-dimethoxy-1,2:3,4-dibenzo-1,3-cyclooctadiene, from the petrol extract of Clerodendron inerme seeds, was characterized by spectroscopic and X-ray crystallographic methods. This compound makes up ca 5% by wt of the seeds.  相似文献   

8.
Three acylated flavonol diglucosides, kaempferol 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; quercetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside; isorhamnetin 3-O-β-(6″-O-E-p-coumaroylglucoside)-7-O-β-glucoside were isolated from the whole plant aqueous alcohol extract of Lotus polyphyllos. The known 3,7-di-O-glucosides of the aglycones kaempferol, quercetin and isorhamnetin were also characterized. All structures were established on the basis of chemical and spectral evidence.  相似文献   

9.
Stereoselective synthesis of 3′-C-methylene- and 2′-methyl-3′-C-methylene-3′-deoxythymidine is described, the key reaction being the formation of 3-C-methylene function by catalytic isomerization of a chiral epoxyalcohol, prepared from commercially available 3-methyl-2-butenal and 3-methyl-2-pentenal.  相似文献   

10.
The reaction of benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-β-lactoside with 1,11-ditosyloxy-3,6,9-trioxaundecane gave benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-isopropylidene-3,2′-O--(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (2, 47%). Acid hydrolysis of 2 and condensation of the product with 1,14-ditosyloxy-3,6,9,12-tetra-oxatetradecane afforded benzyl 2,6,6′-tri-O-benzyl-3′,4′-O-(3,6,9,12-tetraoxa-tetradecane-1,14-diyl)-3,2′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (29%). Similarly, the reaction of benzyl 2,6,2′,4′,6′-penta-O-benzyl-β-lactoside with Ts[OCH2CH2]4OTs gave benzyl 2,6,2′,4′,6′-penta-O-benzyl-3,3′-O-(3,6,9-trioxaundecane-1,11-diyl)-β-lactoside (78%). 1H-N.m.r. spectroscopy has been used to study the formation of host-guest complexes with some of these macrocyclic compounds and benzyl ammonium thiocyanate.  相似文献   

11.
The ability of eight structurally related naturally occurring flavonoids in inhibiting lipid peroxidation and mitochondrial membrane permeability transition (MMPT), as well as respiration and protein sulfhydryl oxidation in rat liver mitochondria, was evaluated. The flavonoids tested exhibited the following order of potency to inhibit ADP/Fe(II)-induced lipid peroxidation, estimated with the thiobarbituric acid assay: 3′-O-methyl-quercetin > quercetin > 3,5,7,3′,4′-penta-O-methyl-quercetin > 3,7,3′,4′-tetra-O-methyl-quercetin > pinobanksin > 7-O-methyl-pinocembrin > pinocembrin > 3-O-acyl-pinobanksin. MMPT was estimated by the extent of mitochondrial swelling induced by 10 μM CaCl2 plus 1.5 mM inorganic phosphate or 30 μM mefenamic acid. The most potent inhibitors of MMPT were quercetin, 7-O-methyl-pinocembrin, pinocembrin, and 3,5,7,3′,4′-penta-O-methyl-quercetin. The first two inhibited in parallel the oxidation of mitochondrial protein sulfhydryl involved in the MMPT mechanism. The most potent inhibitors of mitochondrial respiration were 7-O-methyl-pinocembrin, quercetin, and 3′-O-methyl-quercetin while the most potent uncouplers were pinocembrin and 3-O-acyl-pinobanksin. In contrast 3,7,3′,4′-tetra-O-methyl-quercetin and 3,5,7,3′,4′-penta-O-methyl-quercetin showed the lowest ability to affect mitochondrial respiration. We conclude that, in general, the flavonoids tested are able to inhibit lipid peroxidation on the mitochondrial membrane and/or MMPT. Multiple methylation of the hydroxyl substitutions, in addition to sustaining good anti-lipoperoxidant activity, reduces the effect of flavonoids on mitochondrial respiration, and therefore, increases the pharmacological potential of these compounds against pathological processes related to oxidative stress.  相似文献   

12.
13.
Chalconoid and stilbenoid glycosides from Guibourtia tessmanii   总被引:2,自引:0,他引:2  
Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2′,4-dihydroxy-4′-methoxy-6′-O-β-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4′-O-(β-rhamnopyranosyl-(1→6)-β- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.  相似文献   

14.
Concentrations of two iridoid glucosides (2′-cinnamoyl mussaenosidic acid and 2′-caffeoyl mussaenosidic acid) were measured in different populations of several Avicennia species. The results obtained for 2′-cinnamoyl mussaenosidic acid seem to confirm the recognition of infraspecific taxa in A. marina and also in A. germinans (africana (palaeotropic) and germinans (neotropic)).  相似文献   

15.
16.
Candida antarctica-B (CAL-B) lipase-catalysed alcoholysis of a set of 3′,5′-di-O-acetyl-2′-deoxynucleosides (1a–e) gave the corresponding 3′-O-acetyl-2′-deoxy-nucleosides (2a–e) in yields ranging from 50 to 96%. The alcohol employed in the biotransformation affected the rate of the enzymatic reaction and the yield of the 3′-O-acetylated product, but in all cases only this regioisomer was formed. The obtained results are in agreement with the regioselectivity displayed by CAL-B lipase in previously reported biotransformations of nucleosides. CAL-B catalysed alcoholysis of 2′,3′,5′-tri-O-acetyl-cytidine and 4-N-acetyl-2′,3′,5′-tri-O-acetylcytidine was also studied, affording with the same regioselectivity the corresponding free 5′-hydroxyl nucleosides.  相似文献   

17.
In this paper, we describe the synthesis and thermal stabilities of the triplexes containing either 2′-deoxyinosine (1) or 2′-deoxyxanthosine (3) in their second strands. It was found that the triplexes with the 2′-deoxy-5-methylcytidine(dM)•1:dC and dM•1:dA base triplets are thermally stable, but those containing the dM•1:T and dM•1:dG base triplets are unstable under both neutral and slightly acidic conditions. On the other hand, it was found that the oligonucleotide containing 3 could form thermally stable triplexes with the oligonucleotides that involve four natural bases opposite the sites of 3. The rank of the thermal stabilities of the triplexes was as follows: the triplex containing the dM•3:dC base triplet > that containing the dM•3:dA base triplet > that containing the dM•3:T base triplet > that containing the dM•3:dG base triplet.  相似文献   

18.
Flavonoids in needles of Scots pine planted in 1912–1914 in Poland from seeds originating from different parts of Europe, were isolated, chemically characterised and analysed by HPLC. It was shown that flavonoid profiles were similar in all tested populations and were different from those previously reported for Scots pine seedlings. They included taxifolin, taxifolin 3′-O-glucoside, quercetin as well as quercetin 3-O-glucoside and 3′-O-glucoside. The quercetin 3-O-glucoside could be found only in a trace amount in all samples and quercetin 3′-O-glucoside appeared in all samples regardless their origin. The relative concentration of taxifolin 3′-O-glucoside, quercetin, taxifolin and total flavonoids showed dependence on the origin of seeds; needles from high latitude populations contained smaller amounts of these compounds. Presented data clearly indicate that Scots pine contain glycosidases specific for glycosylation at C-3′ rather than at C-3. Besides, they indicate that long lasting influence of similar environmental factors is not able to change genetic regulatory systems responsible for flavonoid biosynthesis.  相似文献   

19.
The heteroditopic ligand 4′-(4,7,10-trioxadec-1-yn-10-yl)-2,2′:6′,2″-terpyridine, 2, contains an N,N′,N″-donor metal-binding domain that recognizes iron(II), and a terminal alkyne site that selectively couples to platinum(II). This selectivity has been used to investigate routes to the formation of heterometallic systems. The single crystal structures of ligand 2 and the complex [Fe(2)2][PF6]2 are reported.  相似文献   

20.
This report describes a specific and highly sensitive gas chromatography–mass spectrometry (GC–MS) assay for the analysis of industrially produced 2-hydroxypropyl-γ-cyclodextrin, a heterogeneous mixture of homologues and isomers, in plasma of cynomolgus monkeys. Instead of analyzing the polysaccharide mixture as a whole, in a first step the HP-γ-cyclodextrin mixture, together with the internal standard (2,6-di-O-methyl-β-cyclodextrin), was deuteromethylated, and in a second step hydrolyzed with hydrochloric acid to the respective monosaccharides. The resulting reaction mixture was trimethylsilylated to 1,4-bis(O-trimethylsilyl)-2,3-bis-O-deuteromethyl-6-O-2′-deuteromethoxypropylglucose (representative for HP-γ-CD) and 1,4-bis-(O-trimethylsilyl)-bis-2,6-O-methyl-3-O-deuteromethylglucose (representative for the internal standard), respectively, and analyzed by GC–MS. The limit of quantification of this assay was 20 nmol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号