首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An immobilized enzyme reactor has been developed for the degradation of bilirubin as a potential treatment for neonatal jaundice. It utilizes the enzyme bilirubin oxidase from Myrothecium verrucaria, which in the presence of molecular oxygen converts bilirubin to biliverdin and other products that are much less toxic than bilirubin. Bilirubin oxidase was covalently attached to agarose beads using cyano transfer activation. Forty percent of the specific activity of bilirubin oxidase was retained after immmobilization, and preparations with 20 units of enzymatic activity per gram of drained wet weight of gel were obtained. The stability of bilirubin oxidase at pH 7.4 and 37 degrees C was improved fivefold by immobilization. A 15-mL column containing immobilized bilirubin oxidase, through which a 37 degrees C solution of 332muM bilirubin and 450muM human serum albumin in 0.05M phosphate buffer (pH 7.4) was passed at 1 mL/min, converted more than 60 percent of the bilirubin per pass. The substrate specificity of the enzyme and the small volume of the reactor are important characteristics for this clinical application where it is desirable to remove only one compound from the blood and to minimize the volume of blood in the extracorporeal circuit. This reactor, by detoxifying the jaundiced infant's blood of bilirubin, would eliminate the risks associated with the use of donor blood as is done currently in treating severe neonatal jaundice.  相似文献   

2.
Bilirubin oxidase was immobilized to nylon fibres. A tri-enzyme system composed of glucose oxidase, bilirubin oxidase and horseradish peroxidase was also immobilized to the fibres. Both immobilized systems were tested and it was found that the latter gave enhanced oxidation rates for bilirubin.  相似文献   

3.
1. Bilirubin oxidase can catalyse the oxidation of its primary substrate, bilirubin, in a water-in-oil microemulsion, which consists of discrete nanometer-diameter water droplets dispersed in a continuous water-immiscible oil medium. The droplets are stabilized by a monolayer of the surfactant, cetyltrimethylammonium bromide present at the oil/water interface. 2. Spectroscopic evidence is presented to show that bilirubin solubilized in this system is located mainly in the surfactant layer, in a form accessible to the enzyme molecule. 3. Studies are presented on the enzyme-catalysed rate of bilirubin oxidation in this system, as a function of temperature, pH, water content, and substrate and enzyme concentrations. 4. The main conclusions are that the enzyme can efficiently oxidise bilirubin in microemulsions of low water content. The reaction obeys Michaelis-Menten kinetics. The optimal pH for the catalysis is 8.0. The efficiency of catalysis decreases sharply as the water content increases.  相似文献   

4.
Summary Reactor performance was studied to investigate whether a rotating packed disk reactor (RPDR) can be used for the enzymatic oxidation of biochemicals. The disks were packed with calcium alginate beads with immobilized glucose oxidase and catalase, which catalyze the reaction of glucose and oxygen. The production rate of gluconic acid increased with the speed of rotation and the bulk flow rate. An optimum submergence for maximum productivity existed.  相似文献   

5.
Whole cells of Pichia polymorpha have been shown to possess inulinase (2, 1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity. This activity was slightly different from that of the purified enzyme: optimum pH was modified, optimum temperature was higher and thermal stability was improved. Whole cell immobilization by adsorption on beech wood-shavings was straightforward. A reactor of this type permits the bioconversion of inulin into d-fructose (and d-glucose) with sufficient cell growth to ensure the stability of the system. A chicory extract was hydrolysed completely to a high fructose syrup during an experiment lasting 75 days.  相似文献   

6.
A mathematical model has been developed for the unsteady-state operation of an immobilized cell reactor. The substrate solution flows through a mixed-flow reactor in which cells immobilized in gel beads are retained. The substrate diffuses from the external surface of the gel beads to some internal location where reaction occurs. The product diffuses from the gel beads into liquid medium which flows out of the reactor. The model combines simultaneous diffusion and reaction, as well as cell growth, and it can predict how the rates of substrate consumption, product formation, and cell growth vary with time and with initial conditions. Ethanol fermentation was chosen as a representative reaction in the immobilized cell reactor, and numerical calculations were carried out. Excellent agreement was observed between model predictions and experimental data available in the literature.  相似文献   

7.
Experimental investigation is by far the most effective approach for studying the behavior of physical systems. However, an enzymatic solubilization of vegetable protein is a complex combination of intrinsic problems, of which many are not easily adaptable to experimental investigation. Experimental designs to study enzyme vegetable protein reactions yield data which describe the extramembraneous activity of the immobilized enzyme. In a continuous recycle immobilized enzyme reactor, the microenvironment concentration of the substrate or product in the membrane phase, or the concentrations along the reactor axial length in the bulk phase are not discernible to the experimenter. However, the knowledge of such concentration profiles is important in weighing the significance of such factors as intermembrane diffusion, enzyme loading, wet membrane size, and the mode of operation of the reactor. The simulation of mathematical models, which describe the physical system within the constraints imposed, yields information which is vital to the understanding of the process occurring in the reactor. The kinetics and diffusion of an immobilized thermophilic Penicillium duponti enzyme at pH 3.4-3.7 and 50 degrees C was modeled mathematically. The kinetic parameters were evaluated by fitting a model to experimental data using nonlinear regression analysis. Simulation profiles of the effects of reactor geometry, substrate concentration, membrane thickness, and enzyme leading on the hydrolysis rate are presented. From the profiles generated by the mathematical model, the best operational reactor strategy is recommended.  相似文献   

8.
Summary Four enzymes required for the biosynthesis of pencillins and cephalosporins by Streptomyces clavuligerus have been immobilized on an anion exchange resin. The capabilities of the system have been studied by circulation of reaction mixtures through the immobilized enzyme reactor. Within 30 min, all of the substrate -(l--aminoadipyl)-l-cysteinyl-d-valine is consumed and converted to a mixture of penicillins and cephalosporins. After 60 min the major antibiotic products are (iso)penicillin N and desacetylcephalosporin C. The activity of the immobilized enzyme reactor activity is stable to storage at temperatures below 4°C but activity is lost on repeated use.  相似文献   

9.
10.
New immobilized biocatalysts based on phosphotriesterase and porous fabric materials impregnated with chemically cross-linked chitosan and sulphate chitosan gels were investigated. Analysis of the rheological characteristics of enzyme-containing gels confirmed their high plasticity and mechanical strength, while scanning electron microscopy verified their macroporous structure. The fabric matrix could absorb and retain a large amount of liquid thereby increasing its own weight 3.5-4.5 fold. The catalytic characteristics of the immobilized biocatalyst hydrolyzing Paraoxon, Coumaphos, Chlorpyrifos and Diisopropyl fluorophosphate were investigated. The catalytic efficacy of the soluble enzyme was 3.0-5.5-times higher compared to the immobilized form mainly due to the lower Km values. With constant 55-60% humidity the biocatalyst retained 77% and 67-70% activity after 50-day storage at 4°C and 23°C, respectively. Benzalkonium chloride appeared to be an appropriate preservative for long-term storage of immobilized biocatalyst in a wet state.  相似文献   

11.
New immobilized biocatalysts based on phosphotriesterase and porous fabric materials impregnated with chemically cross-linked chitosan and sulphate chitosan gels were investigated. Analysis of the rheological characteristics of enzyme-containing gels confirmed their high plasticity and mechanical strength, while scanning electron microscopy verified their macroporous structure. The fabric matrix could absorb and retain a large amount of liquid thereby increasing its own weight 3.5–4.5 fold. The catalytic characteristics of the immobilized biocatalyst hydrolyzing Paraoxon, Coumaphos, Chlorpyrifos and Diisopropyl fluorophosphate were investigated. The catalytic efficacy of the soluble enzyme was 3.0–5.5-times higher compared to the immobilized form mainly due to the lower Km values. With constant 55–60% humidity the biocatalyst retained 77% and 67–70% activity after 50-day storage at 4°C and 23°C, respectively. Benzalkonium chloride appeared to be an appropriate preservative for long-term storage of immobilized biocatalyst in a wet state.  相似文献   

12.
An enzyme designated as lactate oxidase was purified from Acetobacter peroxydans by using the partition methods of separation. A DE-52 cellulose column was used for the primary purification of lactate oxidase, and the purified enzyme was covalently bound to a porous cellulose bead matrix in which benzoquinone was used as the coupling reagent. The physicochemical properties of the native and immobilized enzymes were determined including molecular weight, cofactor requirements, and optimal reaction conditions. Lactate oxidase was shown not to be subject to product inhibition, and to require Mg(2+) as a metal cofactor. Analysis of an immobilized lactate oxidase packed-bed reactor indicated that this system may not be subject to internal diffusional limitations. Molecular oxygen appeared to be a cosubstrate of the enzyme, and a reaction mechanism was postulated to predict the kinetic behavior of the immobilized reactor system. Applications of the immobilized lactate oxidase reactor for the pulse-flow analysis of lactic acid in whole milk and in a yeast fermentation system were considered.  相似文献   

13.
Ceramic membrane microfilter as an immobilized enzyme reactor.   总被引:1,自引:0,他引:1  
This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.  相似文献   

14.
A p-cresol (PCR)-degrading Pseudomonas sp. was isolated from creosote-contaminated soil and shown to degrade PCR by conversion to protocatechuate via p-hydroxybenzaldehyde (PBA) and p-hydroxybenzoate (PHB). Cells of the Pseudomonas sp. were immobilized in calcium alginate beads and in polyurethane foam. The relationship between the PCR concentration and the PCR transformation rate was investigated in batch and continuous culture bioreactors. The biodegradation kinetics of PBA and PHB also were investigated. In batch culture reactors, the maximum PCR degradation rate (Vmax) for the alginate-immobilized Pseudomonas sp. cells was 1.5 mg of PCR g of bead-1 h-1 while the saturation constant (Ks) was 0.22 mM. For PHB degradation, the Vmax was 0.62 mg of PHB g of bead-1 h-1 while the Ks was 0.31 mM. For polyurethane-immobilized Pseudomonas sp. cells, the Vmax of PCR degradation was 0.80 mg of PCR g of foam-1 h-1 while the Ks was 0.28 mM. For PHB degradation, the Vmax was 0.21 mg of PHB g of foam-1 h-1 and the Ks was 0.22 mM. In a continuous column alginate bead reactor, the Vmax for PCR transformation was 2.6 mg g of bead-1 h-1 while the Ks was 0.20 mM. The Vmax and Ks for PBA transformation in the presence of PCR were 0.93 mg g of bead-1 h-1 and 0.063 mM, respectively. When PHB alone was added to a reactor, the Vmax was 1.48 mg g of bead-1 h-1 and the Ks was 0.32 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A polyethylene-g-acrylic acid (PE-g-AA) graft copolymer was prepared via gamma-ray-irradiation-induced postirradiation procedures, and was used as support material for the immobilization of glucose oxidase. Soluble carbodiimides were used as the coupling agent. Reasonable yields were obtained with CMC but not with EDAC, EEDQ, or WRK. A number of factors were studied. (1) The use of water-soluble carbodiimides as condensing agent was attempted and the optimum condition for coupling glucose oxidase to PE-g-AA was established; (2) the effect of pH and temperature on the reactivity of native and immobilized glucose oxidase was studied. When exposed to temperatures in excess of 60 degrees C, the immobilized glucose oxidase was less sensitive to thermal inactivation than the native enzyme. The optimum pH value for the performance of the enzyme-immobilized membrane was 5. 6. For 200 tests, the response error of glucose sensor was less than 4% and its linear detected range was 0-1000 ppm. The obtained glucose oxidase-immobilized PE-g-AA membranes were kept in pH 5. 6 acetate buffer solution at 4 degrees C. The glucose oxidase activity of the membrane was determined at sevenday intervals. The membranes still have 92% glucose oxidase activity even after eight weeks of storage.  相似文献   

16.
The effect of substrate protection on enzyme deactivation was studied in a differential bed and a packed bed reactor using a commercial immobilized glucose isomerase (Swetase, Nagase Co.). Experimental data obtained from differential bed reactor were analyzed based on Briggs-Haldane kinetics in which enzyme deactivation accompanying the protection of substrate was considered. The deactivation constant of the enzyme-substrate complex was found to be about half of that of the free enzyme. The mathematical analysis describing the performance of a packed bed reactor under the considerations of the effects of substrate protection, diffusion resistance, and enzyme deactivation was studied. The system equations for the packed bed reactor were solved using an orthogonal collocation method. The presence of substrate protection and the diffusion effect within the enzyme particles resulted in an axial variation of effectiveness factor, eta(D), along the length of the packed bed. The axial distribution profile of eta(D) was found to be dependent on the operation temperature, Based on the effect of substrate protection, a better substrate feed policy could be theoretically found for promoting productivity in long-term operation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Experimental runs on the inversion of sucrose by means of immobilized beta-fructooxidase are reported. External mass-transfer and axial dispersion phenomena have been analyzed. It has been observed that external mass-transfer plays a significative role in the overall kinetics, while axial dispersion phenomena are negligible.  相似文献   

18.
Continuous immobilized cell reactor for amide hydrolysis   总被引:1,自引:1,他引:0  
Summary This article deals with continuous hydrolysis of acrylamide into acrylic acid using the wild-typeBrevibacterium sp. R312 which can hydrolyze all water-soluble amides into their corresponding acids. Biotransformation has been carried out in a fluidized bed reactor specially designed to obtain good contact conditions between cells entrapped into small calcium alginate beads (2–3 mm) and low-concentration acrylamide solutions (10–40g·l–1). Different flow rates, biocatalyst loads and substrate concentrations have been investigated. Kinetic constants for the immobilized enzyme have been identified. It appears that the Michaelis constant does not change with operating conditions and remains roughly equal to the value obtained for free cells. In contrast, the maximum rate of hydrolysis is considerably decreased, as if only cells on the outskirts of beads were involved in the transformation. On the whole it is proved that corynebacteria cells could be usefully used for the bioconversion of amides in a continuous immobilized cell reactor; the higher the solid hold-up and/or the smaller the beads, the more efficient the biological transformation.  相似文献   

19.
A differential microrecirculation reactor was developed for kinetic analysis of both soluble and immobilized enzymes. The reactor system was easliy fabricated with in the laboratory from readily available materials. The disposable, small reactors allowed for in situ weight determination of the enzyme beads. Routinely, only a 1 ml liquid volume of substrate was used for each kinetic assay. The reactor system was also used for determination of partition coefficients. Both uses of the reactor system required only 5–10 min for completion of a given determination.  相似文献   

20.
The increasing interest in alcohol fermentation over these last years because of the energy crisis has been demonstrated by an increase in scientific research. After a brief analysis of the main results of the literature in the field of alcohol fermentation reactors, the use of a new type of immobilized cell reactor [the rotating biological surface (RBS) reactor] was studied. As is well known, the RBS reactor is a form of fixed-film reactor and can be described as a dynamic trickling filter. Our experimental apparatus employed a spongy material to trap the yeast cells on the disks. The results of fermentations carried out in the RBS reactor working in batch, in continuous with cell support, and in continuous without cell support have been presented in order to compare the different productivities and to assess the performance of the RBS immobilized cell reactor. An ethanol productivity of 7.1 g/L h was achieved in the RBS-ICR at a dilution rate of 0.3 h(-1), 2.5 times higher than the maximum productivity obtained in the RBS reactor without support at a lower dilution rate. The adoption of a spongy material as a cell immobilizer, combined with the use of the RBS reactor, enhances the particular advantages of both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号