首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nodal segments as well as shoot tips and apical meristems of 2-yr-old “maté” plants (Ilex paraguariensis St. Hil.) were cultured in vitro to establish micropropagation systems. Maximum shoot regeneration was achieved when nodal segments were cultured with 1/4 Murashige and Skoog (MS) medium with 3% sucrose. We induced roots to differentiate by transferring the regenerated shoots onto the same medium, solidified with 2.5 g Phytagel per 1 and supplemented with indole-3-butyric acid (7.4 μM) and finally transferring shoots to 1/4 MS medium with 3% sucrose and lacking growth regulators. Plants were successfully established in soil.  相似文献   

2.
Hairy roots of Centaurium erythraea were obtained by infection with Agrobacterium rhizogenes strain LBA 9402. They spontaneously regenerated adventitious shoots in Woody Plant liquid medium without growth regulators. The shoots were grown continuously in Murashige and Skoog (MS) liquid or agar solidified media supplemented with 0.1 mg l−1 indole-3-acetic acid and 1.0 mg l−1 6-benzylaminopurine. These shoots produced roots 4 weeks after transfer into agar-solidified MS medium without phytohormones. Regenerated plants grown and flowered under greenhouse conditions. The transgenic value of the regenerated plants was confirmed by the polymerase chain reaction amplification. Transformation by Agrobacterium rhizogenes alters plant morphology and production of secoiridoid glucosides. The level of secoiridoids was also modified by development stage of transformed plants. The total content of the compounds (expressed as the sum of gentiopicroside, sweroside and swertiamarin) in 10-week old pRi-transformed regenerants was 280 mg g−1 dry weight and was 8-times the content in the sample of commercially available C. erythraea herb.  相似文献   

3.
 The epicotyl segments bearing scaly leave(s), excised from in vitro grown seedlings of Syzygium cuminii, produced multiple shoots when cultivated on Murashige and Skoog's (MS, 1962) medium supplemented with different concentrations of BA (0–2 mg l–1). The optimum response was recorded on the medium containing 1 mg l–1 BA. An average of 8.6 shoots per explant were produced 60 days after inoculation, following transfer to fresh medium after 30 days. The shoots were excised, and the residual explants were transferred to fresh medium, where they again developed shoots. Up to five such passages resulted in the production of shoots from the repeatedly subcultured original explants. However, during the fifth passage, organogenic response was negligible and the explants turned brown thereafter. Following repeated harvesting of shoots and subculture of the residual explants, an average of 29 shoots per explant was obtained. The in vitro developed shoots produced roots when transferred to Knop's medium supplemented with 2% sucrose and 1 mg l–1 IAA. The developed plantlets were planted in soil and transferred to fields after an acclimatization period of 7–8 months. These plants have been thriving well for more than 3 years. The nodal explants excised from in vitro developed shoots and plants also exhibited a similar response when cultured on MS+1 mg l–1 BA. Thus, a protocol has been developed to raise plants of S. cuminii at any time of the year. Received: 1 December 1998 / Revision received: 1 July 1999 · Accepted: 12 July 1999  相似文献   

4.
 Eleven independent GUS-positive hairy roots were induced by co-cultivation of leaf explants of Antirrhinum majus L. with Agrobacterium tumefaciens strain GV2260 containing the rol type MAT vector pNPI702. The MAT vector pNPI702 possesses a GUS gene under the 35 S promoter and a removal element in which the 7.6-kb DNA fragments containing the rolA, B, C and D genes and recombinase gene with a 35 S promoter are located between two directly oriented recombination site sequences. A total of 326 adventitious shoots regenerated from 11 independent hairy root lines cultured on 1/2MS medium without plant growth regulators at 25  °C under a 16/8 h (day/night) photoperiod after 8 weeks of stock-culture of hairy roots and 4 weeks of culture of the green segments of hairy roots. Regenerated plants showed either a normal or dwarf morphology. GUS activity was observed in the hairy roots and regenerated shoots. The presence of the GUS gene in the regenerated, morphologically normal plants was confirmed by PCR analysis. Received: 28 February 2000 / Revision received: 18 August 2000 / Accepted: 22 August 2000  相似文献   

5.
Dormant axillary buds of nodal explants collected from a mature (35-year-old) tree of Ficus religiosa L. sprouted on MS medium supplemented with 6-benzyladenine (BA, 5 mg l–1) and indole-3-butyric acid (IBA, 0.2 mg l–1 ) within 4 days. Multiple shoots were obtained when these explants were transferred to MS medium containing 1.5 mg l–1 BA and 1.5 mg l–1 adenine sulphate (ADS). These multiple shoots (1 cm) were allowed to elongate to a height of 4–5 cm by maintaining them on MS medium containing 2 mg l–1 BA, 0.5 mg l–1 1-naphthalene acetic acid (NAA), and activated charcoal (0.3% w/v). Nodal segments taken from these in vitro-proliferated shoots yielded multiple shoots when cultured on the multiple shoot-inducing MS medium mentioned above. Root induction in these shoots (4–5 cm in height) was achieved by transferring them onto MS medium supplemented with 2 mg l–1 IBA and 0.1 mg l–1 NAA for 1 week; upon transfer to half-strength MS basal medium these shoots exhibited root proliferation. These rooted plantlets were successfully established in soil after a short period of acclimatization. Received: 17 April 1997 / Revision received: 2 September 1997 / Accepted: 20 September 1997  相似文献   

6.
Improved plant regeneration in Capsicum annuum L. from nodal segments   总被引:2,自引:0,他引:2  
Multiple shoots were induced by culturing nodal explants excised from 1-month-old aseptic seedlings of red pepper (Capsicum annuum L. cv. Pusa Jwala) on Murashige and Skoog (MS) medium supplemented with (0.1–10 μM) thidiazuron (TDZ). The rate of multiple shoot induction per explant was maximum (14.4 ± 0.06) on MS medium supplemented with 1.0 μM TDZ. Regenerated shoots were elongated well on growth regulator free MS medium. Adventitious roots were induced two weeks after transfer of elongated shoots to MS medium supplemented with auxins (IAA, IBA or NAA) in different concentrations. Optimum root formation frequency was obtained in medium containing 1.0 μM IBA. Ex-vitro rooting was also achieved by pulse treatment with 300 μM IBA for 10 min. Rooted shoots were transplanted in plastic pots containing garden soil (with 90 % survival rate), where they grew well and attained maturity. Regenerated plants were phenotypically and cytologically normal.  相似文献   

7.
Summary A simple and effective procedure has been developed for plantlet regeneration from cotyledon-derived callus of the medicinally important herb and ornamental species, Incarvillea sinensis. An average of 18.4 adventitious shoots per explant were obtained from 100% cotyledon explants cultured on half-strength Murashige and Skoog (MS) medium containing 1.0 mg l−1 6-benzylaminopurine for 3 wk, followed by another 4 wk on hormone-free 1/2×MS medium. The cotyledon explants continued to expand and regenerate new shoots upon repeated subculturing onto fresh medium. Most regenerated shoots (66.9%) were rooted on 1/4×MS mediumcontaining 1.0 mg l−1 indole-3-acetic acid, with an average of about 3.8 roots per shoot. Regenerated plants with well developed shoots and roots were successfully acclimatized in soil and were normal phenotypically.  相似文献   

8.
Transgenic Mexican lime [Citrus aurantifolia (Christm.) Swing] plants were regenerated from tissues transformed by Agrobacterium rhizogenes strain A4, containing the wild-type plasmid pRiA4 and the binary vector pESC4 with nos-npt II and cab-gus genes. Transgenic shoots were generated by two different approaches. The first approach used internodal stem segments cocultured with A. rhizogenes. These were placed onto regeneration medium containing Murashige and Skoog salts and B5 organic compounds supplemented with 8 g ⋅ l–1 agar, 7.5 mg ⋅ l–1 6-benzylaminopurine, 1.0 mg ⋅ l–1 -naphthaleneacetic acid, 300 mg ⋅ l–1 cefotaxime and 80 mg ⋅ l–1 kanamycin as a selective agent, and incubated under continuous light at 25 °C. Under these conditions, 76% of the explants produced shoots directly with no hairy root phase, with a mean of 1.3 shoots per explant, and 88% of these shoots were genetically transformed as determined by β-glucuronidase (GUS) assays. In the second approach, segments of transformed roots (15 mm long) obtained from internodal stem segments cocultured with A. rhizogenes were cultured on the above regeneration medium under similar conditions. Forty-one percent of these transformed root segments produced adventitious shoots, with a mean of 2.2 shoots per explant and with 90% of shoots transformed. GUS activity was evident in the transformed roots and in all parts of both transformed shoots and regenerated plants. The presence of the npt II and rolB genes in the regenerated plants was confirmed by PCR analysis. The presence of the npt II gene in the regenerated plants was also confirmed by Southern blot. Using these transformation systems, more than 300 Mexican lime transgenic plants were obtained, 60 of which were adapted to growing in soil. Received: 15 March 1997 / Revision received: 30 December 1997 / Accepted: 19 January 1998  相似文献   

9.
Direct differentiation of shoot buds from the collar region of hypocotyl segments of Coffea canephora was obtained on Murashige and Skoog (MS) medium supplemented with 40 μM silver nitrate (AgNO3) and growth regulators indole-3-acetic acid (IAA) and N6 benzyladenine (BA). The highest response to shoot differentiation of 60% frequency and the maximum number of multiple shoots (2–3) per explant were obtained on MS medium containing 8.87 μM BA and 2.85 μM IAA. Apart from this, 70% of hypocotyl explants produced yellow friable embryogenic callus and also globular primary somatic embryos. Subsequent transfer onto the same medium induced secondary somatic embryogenesis. The micro-shoots, upon transfer to the same medium, in the following 6 weeks developed into 4-cm-long shoots with a single root. Further subculturing onto the same medium induced 4–5 roots in a 4-week period. The resulting plantlets were hardened and transferred to micro-pots containing sand:compost mixture (1:2), where 65% of them survived and resumed growth. By using optimal levels of AgNO3, it was possible to obtain effective direct organogenesis and embryogenesis. This system was used for genetic transformation using Agrobacterium tumefaciens. A stable transformation frequency of 2–5% was obtained when both types of explants, i.e., hypocotyl explants with collar region or hypocotyl explants without collar region, were co-cultivated with A. tumefaciens GV 3101 harboring pCAMBIA 1305.2 binary vector. This is the first report of a hypocotyl collar region-based Agrobacterium-mediated transformation protocol for the economically important tropical plant C. canephora.  相似文献   

10.
An efficient micropropagation system for Hylotelephium tatarinowii (Maxim.) H. Ohba, a rare medicinal plant, has been developed. Callus induced from leaf explants placed onto Murashige and Skoog (MS) medium with supplementation of plant growth regulators. When the concentration of 2,4-dicholorophenoxy acetic acid was as high as 2.0 mg l−1 in combination with 0.5 mg l−1 6-benzylaminopurine (6-BAP), the callus induction rate reached 92.1%. Adventitious shoots were observed on callus exposed to 1.0 mg l−1 6-BAP, with 81.5% frequency of shoot regeneration after 30 d. Flower buds appeared after subculture. Regenerated shoots could flower normally in vitro. Up to 100% of the regenerated shoots formed complete plantlets on half-strength MS medium without any growth regulator, with an average of 5.9 roots per shoot explant. Quantitative analysis of flavonoids and rutin showed that the phytochemical profile of callus and regenerated plants was similar to that of wild plants.  相似文献   

11.
Cell aggregates with root primordia were formed in root primordia culture (RPC) of Solanum lycopersicoides grown in modified liquid MS medium containing 15 mg/l NAA. After transfer to liquid medium containing 1 mg/l 2,4-D, the aggregates dissociated into single root primordia (RP) which had an organizing root meristem at the apical pole. Oval structures called pseudoembryos were formed from single RP. After passage to liquid MS medium without phyto-hormones and organic compounds (with the exception of sucrose), an apical root meristem developed and the shoot apical meristem was initiated. The pseudoembryos developed into elongated pseudoseedlings which formed plants after transfer to a 1/2MSV medium. The development of pseudoembryos occurred without the callus phase. Moreover, the induction of the shoot meristem occurred without exogenous cytokinins. Received: 30 August 1999 / Revision received: 20 December 1999 / Accepted: 3 January 2000  相似文献   

12.
A method for micropropagation ofDalbergia sissoo has been developed. Single node segments obtained from coppice shoots of a mature tree (20 – 25 year old) produced 3–4 shoots per explant on Murashige and Skoog (MS) medium containing 4.4 x 10−6 M benzylaminopurine (BAP) and 4.4 × 10−7 M of Β-naphthoxy acetic acid (NOA) (shoot multiplication medium) within 4 weeks. Thein vitro regenerated shoots were 3 – 4 cm in length and provided 2 to 3 culturable nodal segments which on shoot multiplication medium again produced 3–4 shoots. Following this procedure 18–24 shoots were produced from single nodal segment within 60 d. 80 % of the shoots directly produced five roots when they were firstly treated with MS medium supplemented with 10−5 M indole-3-butyric acid (IBA) and subsequently transferred to half strength liquid MS medium containing 1 % activated charcoal followed by half strength liquid MS free hormones, vitamins and activated charcoal. Thein vitro raised plants were hardened for survival after transplantation to soil by exposing them to various humidity conditions, gradually from higher to low, with nearly 100 % transplant success. Acknowledgement: Authors are grateful to CSIR and DST, New Delhi for financial assistance.  相似文献   

13.
The aim of this study was to investigate both a mass in vitro propagation system and the β-ecdysone content in roots and aerial parts of Pfaffia glomerata and Pfaffia tuberosa. Nodal segments of two genotypes (BRA and JB-UFSM) of P. glomerata, originated from aseptically grown plants, were cultivated on hormone-free Murashige and Skoog medium. For the proliferation of P. tuberosa shoots, nodal segments, originated from aseptically grown plants, were either cultivated on hormone-free Murashige and Skoog (MS) medium or were supplemented with 1.0 μM thidiazuron (TDZ); the elongation and rooting of these plants were carried out on MS medium without TDZ. Plantlets of both species were acclimatized and transferred to field conditions. The β-ecdysone content in the plants was determined by high performance liquid chromatography. The BRA genotype showed a greater in vitro proliferation rate and β-ecdysone content than that of the JB-UFSM genotype. The culture of nodal segments of P. tuberosa on medium with 1.0 μM TDZ with subsequent subcultivation of shoots on hormone-free medium was shown to be a suitable method for micropropagation due to the high multiplication rate and good plant development. Both species showed good adaptation to ex vitro conditions. The β-ecdysone content in micropropagated P. tuberosa was similar to that found in field-grown plants. For both species, the aerial parts accumulated higher β-ecdysone content than roots. These results reveal that micropropagation is a successful, alternative method for rapid plant multiplication of both species of Brazilian ginseng. Furthermore, this study demonstrates that these two species have a potential for cultivation that is associated with high β-ecdysone production.  相似文献   

14.
Multiple shoots of Spilanthes acmella Murr. were induced from hypocotyl segments obtained from 1-week-old seedlings on Murashige and Skoog's (MS) medium containing benzyladenine (BA), isopentenyl adenine, and naphthaleneacetic acid (NAA). High frequency shoot proliferation (95 %) and maximum number of shoots per explant (10 ± 0.6) were recorded with 0.5 mg dm–3 BA in combination with 0.1 mg dm–3 NAA. A proliferation was achieved by repeatedly subculturing the nodal segments on shoot multiplication medium. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing indole-3-butyric acid (1.0 mg dm–3). 95 % of the plantlets were successfully acclimatized and established in soil. Transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

15.
 St. John's wort (Hypericum perforatum. cv 'Anthos') is a medicinal plant with evidence of efficacy as an anti-depressant. The present report describes the development of an in vitro regeneration system that utilizes thidiazuron [N-phenyl-N′-(1,2,3-thidiazol-yl)urea] for the induction of de novo shoots on etiolated hypocotyl segments of St. John's wort seedlings. The optimum level of thidiazuron supplementation to the culture medium was 5 μmol·l–1 for a 9-day induction period followed by subculture of induced hypocotyl explants on basal medium. Other plant growth regulators including benzyladenine and indoleacetic acid were not effective in inducing regeneration on St. John's wort hypocotyls. Histological examination of the cultures revealed that the regenerated plants were derived from de novo developed shoots. Transfer of the regenerated shoots into a liquid medium with no plant growth regulators resulted in the rapid and prolific growth of viable plantlets. The rapid and efficient micropropagation system for St. John's wort may be useful for both the genetic improvement of this crop and the production of high-quality phytopharmaceutical preparations for the treatment of neurological disorders. Received: 19 March 1999 / Revision received: 5 July 1999 · Accepted: 17 August 1999  相似文献   

16.
This paper describes multiple shoot regeneration from leaf and nodal segments of a medicinally important herb Centella asiatica L. on Murashige and Skoog’s (MS) medium supplemented with a range of growth regulators. The highest number of multiple shoots was observed on MS augmented with 3.0 mg dm−3 N6-benzylaminopurine (BAP) and 0.05 mg dm−3 α-naphthaleneacetic acid (NAA). Leaf explant showed maximum percentage of cultures regenerating shoots (81.6 %), with the highest shoot number (8.3 shoots per explant) and the shoot length (2.1 cm) whereas, nodal explant showed less number of shoots with callus formation at the base cut end. Successive shoot cultures were established by repeatedly sub-culturing the original explant on a fresh medium. Rooting of in vitro raised shoots was best induced on half strength MS supplemented with 0.5 mg dm−3 indole-3-butyric acid (IBA) with highest percentage of shoot regenerating roots (76.8 %) with 3–4 roots per shoot. Plantlets were acclimated in Vermi-compost and eventually established in soil. Contents of chlorophyll, total sugars, reducing sugars and proteins were estimated in leaf tissue from both in vivo and in vitro raised plants. Chlorophyll content was higher in in vivo plants, whereas other three components were higher in in vitro plants.  相似文献   

17.
A method for regenerating pigeonpea [Cajanus cajan (L.) Millsp.] plants has been developed using distal cotyledonary segments of mature seeds as explants. A large number of shoot buds were induced directly from explants of genotypes T-15-15 and GAUT-82-90 when cultured on six different basal media fortified with 22.2 μm N6-benzylaminopurine, 2.3 μm kinetin, and 271 μm adenine sulfate. The shoot buds developed into shoots when they were subcultured on the same medium but with one-tenth concentrations of cytokinins and adenine sulfate. The shoots elongated by subculturing first two to three times on Murashige and Skoog (MS) basal medium supplemented with 2.22 μm N6-benzylaminopurine and 0.54 μm α-naphthaleneacetic acid or on half-strength MS medium containing 2.89 μm gibberellic acid, and then once on the same medium without growth regulators. Elongated shoots were rooted with 80–85% efficiency on MS medium with 4.92 μm indole-3-butyric acid and the plantlets were transferred for hardening. Plants survival in pots was 70–75%. This method may be useful for improving the crop through genetic manipulations. Received: 11 August 1997 / Revision received: 12 January 1998 / Accepted: 30 January 1998  相似文献   

18.
Micropropagation of Sesbania rostrata from the Cotyledonary Node   总被引:5,自引:1,他引:4  
Multiple shoots were induced from the cotyledonary nodes derived from seedling of Sesbania rostrata on Nitsch (1969; N) medium supplemented with various concentrations of benzyladenine (BA). 1 mg dm−3 BA proved to be the best, eliciting 5.8 ± 1.0 shoots per explant in 100 % cultures. The elongation of shoots was best at 2.0 mg dm−3 BA. The shoot proliferation capacity increased to 7.5 shoots per explant following transfer of explants to the fresh shoot multiplication medium (MS + 1.0 mg dm−3 BA), after an initial incubation of 30 d. To further enhance number of shoots per explant an alternative strategy of cultivation of mother explant on fresh shoot multiplication medium after excision of shoots was adopted. Following the repeated harvesting of shoots an average of 33 shoots per explant could be obtained. The in vitro regenerated shoots produced roots when transferred to half-strength MS medium supplemented with 3 % sucrose and 1 mg dm−3 IBA. The developed plantlets were planted in the soil and transferred to the field after an acclimatization period of 3 – 4 months. These plants produced flowers and fruits in the field and exhibited the development of prominent and more organized stem nodules as compared to the in vivo raised plants of the same age. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The organogenic potential and antioxidant potential (1, 1-diphenyl-2-picrylhydrazyl-scavenging activity) of the medicinal plant Piper nigrum L. (black pepper) were investigated. Callus induction and shoot regeneration were induced from leaf explants of potted plants cultured on MS medium supplemented with different plant growth regulators. The best callogenic response was observed on explants cultured for 30 days on MS medium supplemented with either 0.5 or 1.5 mg l−1 6-benzyladenine (BA) + 1.0 mg l−1 α-naphthaleneacetic acid. Subsequent transfer of the callogenic explants onto MS medium supplemented with 1.5 mg l−1 BA + 1.0 mg l−1 gibberellic acid (GA3) achieved 85% shoot organogenesis after 30 days of culture. The maximum number (7.2) of shoots/explant was recorded for explants cultured in MS medium supplemented with 1.0 mg l−1 BA. Following the transfer of shoots to an elongation medium, the longest shoots (5.4 cm) were observed on MS medium supplemented with 1.0 mg l−1 BA + 1.0 mg l−1 GA3. The elongated shoots were rooted on MS medium supplemented with different concentrations of indole butyric acid. An assay of the antioxidant potential of the in vitro-grown tissues revealed that the antioxidant activity of the regenerated shoots was significantly higher than that of callus and the regenerated plantlets.  相似文献   

20.
Efficient callus and explant regeneration medium, using microbial extract (SPE purified) or supernatant has been formulated for Brassica oleracea L. var. capitata. Two cyanobacterial strains (Anabaena sp. Ck1 and Chroococcidiopsis sp. Ck4) and two bacterial strains, (Pseudomonas spp. Am3 and Am4) known to produce a number of cytokinins, tZ, cZ, ZR, DHZR and IAA were selected for the media formulation. Supernatant from strains with high cytokinin to IAA ratio, including Pseudomonas aeruginosa Am3 (2.08) and Chroococcidiopsis sp. Ck4 (0.8) efficiently induced compact calli which were turned green upon exposure to light. The strains producing lower cytokinins to IAA ratio (0.11–0.13) on the other hand induced friable callus which were unable to regenerate on the selected media combinations. Leaf, stem and root explants of Brassica oleracea L. regenerated on MS medium supplemented with phytohormones from microbial origin with efficiency comparable to standard cytokinins and IAA. Supplements from cyanobacterial origin proved to be the best for induction of adventitious roots and shoots on internodal and petiolar segments. Hypocotyl explants however, responded well on MS supplemented with bacterial metabolites. Induction of adventitious shoots on root explants was supported by phytohormones from both origin equally well. Callus induction on the seeds and regeneration of shoots on calli was also observed. Cyanobacteria based media were more efficient to induce calli capable of regeneration upon exposure to light. Internodal explants were highly amenable to regenerate shoot and roots simultaneously. Root explants were the less successful to regenerate shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号