首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Touraine B  Briat JF  Gaymard F 《FEBS letters》2012,586(6):880-883
Iron treatment of Arabidopsis cultured cells promotes a rapid NO burst within chloroplasts, necessary for up-regulation of the AtFer1 ferritin gene expression. The same occurs in Arabidopsis leaf chloroplasts, and is dependent upon the GSH content of plants. A leaf GSH concentration threshold between 10 and 50 nmol GSHg(-1) FW is required for full induction of AtFer1 gene expression in response to iron.  相似文献   

7.
In plants, iron homeostasis is tightly regulated to supply sufficient amounts of this metal for an optimal growth while preventing excess accumulation to avoid oxidative stress. To identify new regulators of iron homeostasis, a luciferase-based genetic screen using the Arabidopsis AtFer1 ferritin promoter as a target was developed. This screen identified TIME FOR COFFEE (TIC) as a regulator of AtFer1 gene expression. TIC was previously described as a nuclear regulator of the circadian clock. Mutants in the TIC gene exhibited a chlorotic phenotype rescued by exogenous iron addition and are hypersensitive to iron during the early stages of development. We showed that iron overload-responsive genes are regulated by TIC and by the central oscillator of the circadian clock. TIC represses their expression under low iron conditions, and its activity requires light and light/dark cycles. Regarding AtFer1, this repression is independent of the previously characterized cis-acting element iron-dependent regulatory sequence, known to be involved in AtFer1 repression. These results showed that the regulation of iron homeostasis in plants is a major output of the TIC- and central oscillator-dependent signaling pathways.  相似文献   

8.
In plants of the facultative halophyte Mesembryanthemum crystallinum L. cultivated under climate-controlled conditions, expression of one of ferritin genes, McFer, the ortholog of arabidopsis AtFer1 gene was studied for the first time. The level of this gene expression occurring in response to oxidative stress and changes in the iron status was similar to that of AtFer1 gene. A dependence of McFer gene expression and ferritin content on the regime of plant supplying with Fe-EDTA on the background of medium salinity (300 mM NaCl), oxidative stress modeling by leaf treatment with paraquat (PQ, 100 μM), or in the presence of antioxidant spermidine (Spd, 1 mM) was analyzed. The level of gene expression was assessed by RT-PCR, whereas the content of ferritin by Western blotting, using the primary polyclonal antibody against pea ferritin. An enhanced production of superoxide radical and hydrogen peroxide at leaf treatment with PQ activated gene expression and ferritin content, whereas ROS scavenging with the antioxidant Spd suppressed gene expression. It is concluded that ferritin deposits in the halophyte M. crystallinum, which we have observed earlier in the chloroplasts of the mesophyll and parenchyma of the vascular system, fulfill not only storage but also protective role by binding the excessive Fe2+, a catalyzer of OH·− production.  相似文献   

9.
10.
Iron increases ferritin synthesis, targeting plant DNA and animal mRNA. The ferritin promoter in plants has not been identified, in contrast to the ferritin promoter and mRNA iron-responsive element (IRE) in animals. The soybean leaf, a natural tissue for ferritin expression, and DNA, with promoter deletions and luciferase or glucuronidase reporters, delivered with particle bombardment, were used to show that an 86-base pair fragment (iron regulatory element (FRE)) controlled iron-mediated derepression of the ferritin gene. Mutagenesis with linkers of random sequence detected two subdomains separated by 21 base pairs. FRE has no detectable homology to the animal IRE or to known promoters in DNA and bound a trans-acting factor in leaf cell extracts. FRE/factor binding was abrogated by increased tissue iron, in analogy to mRNA (IRE)/iron regulatory protein in animals. Maximum ferritin derepression was obtained with 50 microm iron citrate (1:10) or 500 microm iron citrate (1:1) but Fe-EDTA was ineffective, although the leaf iron concentration was increased; manganese, zinc, and copper had no effect. The basis for different responses in ferritin expression to different iron complexes, as well as the significance of using DNA but not mRNA as an iron regulatory target in plants, remain unknown.  相似文献   

11.
12.
13.
14.
从水稻基因组文库中筛选得到一个水稻GST基因,命名为OsGSTL1.半定量RT-PCR分析表明OsGSTL1基因的表达不受绿磺隆、乙烯利、脱落酸、水杨酸和茉莉酸甲酯的诱导,因此该基因可能与植物抗逆性无关.为了研究OsGSTL1启动子在植物体内的表达特性,将OsGSTL1起始位点5'端上游不同长度的调控序列与报告基因GUS融合,并在洋葱表皮瞬间表达和拟南芥中稳定表达.研究表明:在洋葱表皮细胞中,160bp及更长的上游调控序列均能启动GUS基因的表达;而在转基因拟南芥中,含有2155 bp的上游序列的PGZ2.1::GUS具有时空表达的特性,在转基因的早期幼苗中GUS基因在子叶中特异性表达,但在根中没有表达;而在幼苗生长的后期,根、茎、叶中都有少量的表达.但包含1 224 bp的上游序列的PGZ1.2::GUS却表现为组成型表达的特性.由此推测,OsGSTL1启动子启动的基因表达可能与幼苗的营养代谢相关;而OsGSTL1启动子的时空表达相关元件可能位于OsGSTL1翻译起始位点5'端上游-2155 bp至-1224 bp范围内.  相似文献   

15.
A prototypical characteristic of the Brassicaceae is the presence of the myrosinase-glucosinolate system. Myrosinase, the only known S-glycosidase in plants, degrades glucosinolates, thereby initiating the formation of isothiocyanates, nitriles and other reactive products with biological activities. We have used myrosinase gene promoters from Brassica napus and Arabidopsis thaliana fused to the beta -glucuronidase (GUS) reporter gene and introduced into Arabidopsis thaliana, Brassica napus and/or Nicotiana tabacum plants to compare and determine the cell types expressing the myrosinase genes and the GUS expression regulated by these promoters. The A. thaliana TGG1 promoter directs expression to guard cells and phloem myrosin cell idioblasts of transgenic A. thaliana plants. Expression from the same promoter construct in transgenic tobacco plants lacking the myrosinase enzyme system also directs expression to guard cells. The B. napus Myr1.Bn1 promoter directs a cell specific expression to idioblast myrosin cells of immature and mature seeds and myrosin cells of phloem of B. napus. In A. thaliana the B. napus promoter directs expression to guard cells similar to the expression pattern of TGG1. The Myr1.Bn1 signal peptide targets the gene product to the reticular myrosin grains of myrosin cells. Our results indicate that myrosinase gene promoters from Brassicaceae direct cell, organ and developmental specific expression in B. napus, A. thaliana and N. tabacum.  相似文献   

16.
Under conditions of iron deficiency, graminaceous plants induce the expression of genes involved in the biosynthesis of mugineic acid family phytosiderophores. We previously identified the novel cis-acting elements IDE1 and IDE2 (iron-deficiency-responsive element 1 and 2) through promoter analysis of the barley (Hordeum vulgare L.) iron-deficiency-inducible IDS2 gene in tobacco (Nicotiana tabacum L.). To gain further insight into plant gene regulation under iron deficiency, we analyzed the barley iron-deficiency-inducible IDS3 gene, which encodes mugineic acid synthase. IDS3 promoter fragments were fused to the beta-glucuronidase (GUS) gene, and this construct was introduced into Arabidopsis thaliana L. and tobacco plants. In both Arabidopsis and tobacco, GUS activity driven by the IDS3 promoter showed strongly iron-deficiency-inducible and root-specific expression. Expression occurred mainly in the epidermis of Arabidopsis roots, whereas expression was dominant in the pericycle, endodermis, and cortex of tobacco roots, resembling the expression pattern conferred by IDE1 and IDE2. Deletion analysis revealed that a sequence within -305 nucleotides from the translation start site was sufficient for specific expression in both Arabidopsis and tobacco roots. Gain-of-function analysis revealed functional regions at -305/-169 and -168/-93, whose coexistence was required for the induction activity in Arabidopsis roots. Multiple IDE-like sequences were distributed in the IDS3 promoter and were especially abundant within the functional region at -305/-169. A sequence moderately homologous to that of IDE1 was also present within the -168/-93 region. These IDE-like sequences would be the first candidates for the functional iron-deficiency-responsive elements in the IDS3 promoter.  相似文献   

17.
We report here the identification of a cis-acting region involved in light regulation of the nuclear gene (GapB) encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Our results show that a 664-bp GapB promoter fragment is sufficient to confer light induction and organ-specific expression of the Escherichia coli beta-glucuronidase reporter gene (Gus) in transgenic tobacco (Nicotiana tabacum) plants. Deletion analysis indicates that the -261 to -173 upstream region of the GapB gene is essential for light induction. This region contains four direct repeats with the consensus sequence 5'-ATGAA(A/G)A-3' (Gap boxes). Deletion of all four repeats abolishes light induction completely. In addition, we have linked a 109-bp (-263 to -152) GapB upstream fragment containing the four direct repeats in two orientations to the -92 to +6 upstream sequence of the cauliflower mosaic virus 35S basal promoter. The resulting chimeric promoters are able to confer light induction and to enhance leaf-specific expression of the Gus reporter gene in transgenic tobacco plants. Based on these results we conclude that Gap boxes are essential for light regulation and organ-specific expression of the GapB gene in A. thaliana. Using gel mobility shift assays we have also identified a nuclear factor from tobacco that interacts with GapA and GapB DNA fragments containing these Gap boxes. Competition assays indicate that Gap boxes are the binding sites for this factor. Although this binding activity is present in nuclear extracts from leaves and roots of light-grown or dark-treated tobacco plants, the activity is less abundant in nuclear extracts prepared from leaves of dark-treated plants or from roots of greenhouse-grown plants. In addition, our data show that this binding factor is distinct from the GT-1 factor, which binds to Box II and Box III within the light-responsive element of the RbcS-3A gene of pea.  相似文献   

18.
桃PpMADS1基因启动子的克隆及功能分析   总被引:3,自引:0,他引:3  
PpMADS1基因属于一类MADS box 基因,在植物的花发育调控中起着重要的作用。通过Genome Walking的方法从桃基因组中分离了长度为1 814bp的PpMADS1基因启动子片段,序列分析表明,在此启动子上不仅含有TATA box 和CAAT box基本元件,而且含有大量的与光调节有关的调控元件,如GT-1,Sp1和as-2-box,另外存在两个CArG-box元件、一个G-box元件和一个TGA-element,说明该启动子可能受光周期和激素的调控。将该启动子通过5′端缺失,分区段与GUS报告基因连接构建表达载体,并转化拟南芥。GUS组织化学染色分析结果表明,在-197到-454bp有促使GUS在花原基中表达的花原基特异性元件,在-454到-678bp之间存在促使GUS在萼片和花瓣表达的特异性元件,在-678到-978bp存在负调控作用元件,阻遏了GUS基因在花药中的表达。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号