首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sprague-Dawley rats were anesthetized with chloral hydrate, and plastic cannulae were permanently implanted into the lateral ventricles. The animals then were allowed to recover for 1-2 days. L-Buthionine sulfoximine (L-BSO), a selective inhibitor of glutathione (GSH) synthesis, and 6-hydroxydopamine (6-OH-DA), a selective catecholaminergic neurotoxin, were administered intracerebroventricularly. The striatal concentrations of GSH and monoamines were determined by HPLC with electrochemical detection. Two injections of L-BSO (3.2 mg, at a 48-h interval) resulted in a 70% reduction of striatal GSH. 6-OH-DA (150 or 300 micrograms) reduced the concentrations of striatal dopamine and noradrenaline 7 days after the administration, but left the concentrations of 5-hydroxytryptamine unaltered. L-BSO treatment did not produce any changes in the levels of monoamines per se but it potentiated the catecholamine-depleting effect of 6-OH-DA in the striatum. Thus, GSH appears to suppress the toxicity of 6-OH-DA, probably by scavenging the toxic species formed during 6-OH-DA oxidation. In view of these results one may suggest an important role for GSH in catecholaminergic neurons: protecting against the oxidation of endogenous catechols.  相似文献   

2.
In the present study the influence of pretreatment with various GSH depletors such as buthionine sulfoximine (BSO) and diethylmaleate (DEM) was investigated in rats following cerebral postischemic reperfusion. Moreover, the effect of diethyldithiocarbamic acid (DDC), inhibitor of endogenous Cu,Zn-SOD, was evaluated. A significant depletion (40% of control value) of GSH levels was observed 24 h after DEM administration; after 48 h the value reached control levels. BSO showed maximal GSH depletion (59%) 24 h after administration and it was constant for almost 48 h. DDC administration caused a marked decrease (60%) of Cu,Zn-SOD activity 4 h after the injection and induced a marked decrease in percentage of survival with respect to control (untreated, ischemic) rats, when administered 4 h before ischemia. BSO and DEM prolonged the survival time of animals when administered 24 h before ischemia. This last paradoxical effect is unclear at present, but it might be due to an influence on glutamate cascade.  相似文献   

3.
Previous studies indicated that DL-buthionine sulfoximine (DL-BSO), an agent that inhibits the biosynthesis of GSH in liver and other peripheral organs, fails to suppress levels of GSH in the CNS. In the current study, preweanling mice responded to repeated injections of L-BSO with marked declines (79.6-86.5%) of GSH content in brain and spinal cord. In adult mice, the same treatment schedule produced only modest declines (17.8-29.2%) of GSH content in brain and a 55.9% decline in spinal cord. Pretreatment of preweanling mice with L-BSO represents a tool for studying the role of GSH in the CNS.  相似文献   

4.
The present study examined the time-course and regionally-selective changes in the levels of the neurofilament protein NF68 in the mouse brain induced by methamphetamine (METH). The ability of low ambient temperature, or of the specific neuronal nitric oxide synthase (nNOS) inhibitor AR-R17477AR, to protect against both long-term striatal NF68 and dopamine loss induced by METH (3 mg/kg, i.p.) was also studied. Seven days after METH administration (3, 6 and 9 mg/kg, i.p., three times at 3 h intervals), mice showed a reduction of about 40% in immunoreactivity for NF68 in the striatum. This effect was not produced in cortex after METH administration at the dose of 3 mg/kg. No difference from controls was observed when measurements were carried out 1 h and 24 h after the last METH injection at the dose of 3 mg/kg. The loss of NF68 immunoreactivity seems to be associated with the long-term dopamine depletion induced by METH, since no change in serotonin concentration is observed in either the striatum or cortex 7 days after dosing. Animals kept at a room temperature of 4 degrees C showed a loss of NF68 similar to those treated at 22 degrees C but an attenuation of dopamine depletion in the striatum. Pre-treatment with AR-R17477AR (5 mg/kg, s.c.) 30 min before each of the three METH (3 mg/kg, i.p.) injections provided complete protection against METH-induced loss of NF68 immunoreactivity and attenuated the decrease in striatal dopamine and HVA concentrations by about 50%. These data indicate that both the reduction of NF68 immunoreactivity and the loss of dopamine concentration are due to an oxidative stress process mediated by reactive nitrogen species, and are not due to changes in body temperature.  相似文献   

5.
We investigated the effects of buthionine sulfoximine (BSO)-mediated glutathione (GSH) depletion on the antitumor activity in Balb/c mice produced by four disulfide derivatives of 6-TG and 6-MP. Initial studies indicated that 14 h after BSO (5 mmol/kg) injections, tumor GSH levels were maximally depleted, while normal tissue GSH levels had returned to near control levels. Tumor growth delays and growth rates were compared for groups of animals receiving disulfides I-IV with and without BSO administration 14 h previous. Treatments with BSO alone produced no delay or growth rate differences from the control. Compounds II or III administered in the presence and absence of BSO also produced no delay or growth rate differences from control. Compound I (10 mg/kg) alone showed a delay of 5.2 days and a growth rate significantly slower than that of control (p = 0.05). In combination with BSO the effects were not enhanced. Compound IV (50 mg/kg) also produced delays in 2 separate trials (3.1 and 4.8 days) and significantly slower growth rates on each occasion compared to the control (p = 0.05). The growth rates were not significantly lowered in the presence of BSO. Administration of two doses of IV, 4 days apart, produced a delay (4.9 days) similar to that seen with a single dose. It produced 2 cures and was also more toxic, causing 3 deaths. Two doses of IV in combination with BSO pretreatment had a greater delay (16.0 days) and a significantly longer growth rate (p = 0.05) than two doses of IV alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We have determined the dose-response curves (100-900 mg of Fe/kg body wt.) and the time course over 84 days for the effects of a single injection of iron-dextran on rat hepatic 5-aminolaevulinate synthetase, cytochrome P-450, iron content, and GSH (reduced glutathione). Porphyrins in liver and urine have also been measured. (1) At 2 days after treatment, a dose of 500 mg of Fe/kg produced a 20-fold increase in iron concentration, which was maintained for 14 days. Total hepatic iron remained constant over 63 days, falling slightly by 84 days. (2) The activity of 5-aminolaevulinate synthetase was maximally increased (6-fold) 12-24 h after iron treatment. By 48 h the activity fell to less than twice the control value and thereafter remained slightly above the control value (1.1-1.5-fold) until 84 days after iron treatment. Liver GSH concentrations were unaffected by iron. Porphyrins in liver and urine were either unchanged or decreased. (3) Hepatic cytochrome P-450 decreased after iron treatment to a minimum (63% of control) at 48 h after iron administration and gradually returned to the control value by 28 days. (4) Iron-dextran potentiated 2 allyl-2-isopropyl-acetamide-induced synthesis of hepatic 5-aminolaevulinate. Potentiation occurred if the drug was given at the same time or 36 h after iron administration, but did not occur if the drug was given 14 or 64 days after iron administration. (5) The results are discussed in relation to proposed mechanisms for the effects of iron on hepatic haem metabolism.  相似文献   

7.
Glutathione (GSH) depletion to approximately equal to 5% of control for 48 h or longer by 0.05 mM L-buthionine sulfoximine (BSO) led to appreciable toxicity for the 66 murine mammary carcinoma cells growing in vitro [L.A. Dethlefsen et al., Int. J. Radiat. Oncol. Biol. Phys. 12, 1157-1160 (1986)]. Such toxicity in normal, proliferating cells in vivo would be undesirable. Thus the toxic effects after acute GSH depletion to approximately equal to 5% of control by BSO plus dimethylfumarate (DMF) were evaluated in these same 66 cells to determine if this anti-proliferative effect could be minimized. Two hours of 0.025 mM DMF reduced GSH to 45% of control, while 6 h of 0.05 mM BSO reduced it to 16%. However, BSO (6 h) plus DMF (2 h) and BSO (24 h) plus DMF (2 h) reduced GSH to 4 and 2%, respectively. The incorporation (15-min pulses) of radioactive precursors into protein and RNA were unaffected by these treatment protocols. In contrast, cell growth was only modestly affected, but the incorporation of [3H]thymidine into DNA was reduced to 64% of control by the BSO (24 h) plus DMF (2 h) protocol even though it was unaffected by the BSO (6 h) plus DMF (2 h) treatment. The cellular plating efficiencies from both protocols were reduced to approximately equal to 75% of control cells. However, the aerobic radiation response, as measured by cell survival, was not modified at doses of either 4.0 or 8.0 Gy. The growth rates of treated cultures, after drug removal, quickly returned to control rates and the resynthesis of GSH in cells from both protocols was also rapid. The GSH levels after either protocol were slightly above control by 12 h after drug removal, dramatically over control (approximately equal to 200%) by 24 h, and back to normal by 48 h. Thus even a relatively short treatment with BSO and DMF resulting in a GSH depletion to 2-5% of control had a marked effect on DNA synthesis and plating efficiency and a modest effect on cellular growth. One cannot rule out a direct effect of the drugs, but presumably the antiproliferative effects are due to a depletion of nuclear GSH with the subsequent inhibition of the GSH/glutaredoxin-mediated conversion of ribonucleotides to deoxyribonucleotides. However, even after extended treatment, upon drug removal, GSH was rapidly resynthesized and cellular DNA synthesis and growth quickly resumed.  相似文献   

8.
Papillary necrosis was observed in the kidneys of rats, 72 h after receiving a single injection of bromoethylamine (BEA). This effect was associated with renal glutathione (GSH) depletion 1 h after the administration of BEA. Stimulation of renal GSH synthesis by pretreatment of the animals either with glutamine + glycine + cystine or N-acetyl-L-cysteine was attempted. Low doses of these precursors administered previously to BEA, respectively, decreased or abolished the GSH depletion. Nevertheless, both pretreatments failed to modify the magnitude of renal papillary necrosis. High doses of these precursors did not modify the BEA-induced GSH depletion, but they significantly increased GSH levels 24 h after BEA administration. At this time, although a smaller intensity of renal papillary necrosis was observed with the amino acid mixture pretreatment, N-acetyl-L-cysteine pretreated rats showed no papillary necrosis. It is suggested that the observed protective effects against BEA-induced renal papillary injury may be ascribed in some measure, to a mechanism independent of GSH.  相似文献   

9.
Vriend J  Dreger L 《Life sciences》2006,78(15):1707-1712
Haloperidol, an antipsychotic drug, was tested for its effects on the in situ activity of nigrostriatal and hypothalamic tyrosine hydroxylase, in control male Syrian hamsters and in those receiving a high daily dose of melatonin. After receiving daily ip injections (1.25 mg/kg ip) of haloperidol for 21 days, the animals were sacrificed and brain tissue collected for analysis of dopamine and metabolites by HPLC with electrochemical detection. In situ activity of tyrosine hydroyxlase (TH) activity was determined by measuring the accumulation of L-Dopa after administration of the L amino acid decarboxylase inhibitor, mhydroxybenzylhydrazine. Tissue content of dopamine and its metabolites, DOPAC and HVA, was depressed in striatum of animals receiving haloperidol, and tyrosine hydroxylase (TH) activity was significantly decreased 20-24 h after the last injection (from 1823 +/- 63 to 1139 +/- 85 pg l-dopa/mg tissue). The decrease in TH activity in striatum was significantly inhibited by daily injections of a high dose of melatonin (2.5 mg/kg ip) (from 1139 +/- 85 to 1560 +/- 116 pg L-dopa/mg tissue). In the substantia nigra and in the hypothalamus, on the other hand, haloperidol significantly increased the activity of tyrosine hydroxylase. Melatonin administration did not significantly influence TH activity in the substantia nigra, but inhibited TH activity in the hypothalamus and in the pontine brainstem. One explanation for these data is that chronic haloperidol administration in Syrian hamsters increases TH activity in hypothalamus and substantia nigra, but decreases TH activity in striatum by a mechanism involving D2 presynaptic receptors and a melatonin sensitive kinase which regulates TH phosphorylation.  相似文献   

10.
Nimesulide (NIM), an atypical non-steroidal anti-inflammatory drug (NSAID) is also used as analgesic. In the present study, we evaluated its effect on the prooxidant-antioxidant system of liver and the hepatoprotective potential of aqueous extract of the herb Phyllanthus niruri (PN) on NIM-induced oxidative stress in vivo using a murine model, by determining the activities of hepatic anti-oxidant enzymes superoxide dismutase (SOD) and catalase (CAT), levels of reduced glutathione (GSH) and lipid peroxidation (expressed as malonaldialdehyde, MDA). Aqueous extract of PN at a dose of 50 or 100 mg/kg body wt was administered either intraperitoneally or orally for 7 days, before NIM administration at a dose of 8 mg/kg body wt twice daily for 7 days in mice. Animals were sacrificed 24 h after administration of final dose of NIM. In another set of experiments, both aqueous extract of PN (at a dose of 50 or 100 mg/kg body wt) and NIM (8 mg/kg body wt) were administered simultaneously for 7 days. Animals were sacrificed 24 h after administration of final dose of the extract and NIM, liver tissues were collected, and the activities of SOD and CAT and levels of GSH and lipid peroxidation end-product (as MDA), were determined from the livers of all the experimental animals. Appropriate NIM control was maintained for all sets of experiments. NIM administration (8 mg/kg body wt) for 7 days caused significant depletion of the levels of SOD, CAT and reduced GSH, along with the increased levels of lipid peroxidation. Intraperitoneal administration of the extract at a dose of 50 mg/kg body wt for 7 days,. prior to NIM treatment, significantly restored most of the NIM-induced changes and the effect was comparable to that obtained by administering 100 mg/kg body wt of the extract orally. Thus, results suggested that intraperitoneal administration of the extract could protect liver from NIM-induced hepatic damage more effectively than oral administration. Antioxidant property of the aqueous extract of PN was also compared with that of a known potent antioxidant, vitamin E. The PN extract at a dose of 100 mg/kg body wt along with NIM was more effective in suppressing the oxidative damage than the PN extract at a dose of 50 mg/kg body wt. Results suggested that beneficial effect of the aqueous extract of PN, probably through its antioxidant property, might control the NIM-induced oxidative stress in the liver.  相似文献   

11.
The effect of the racemic mixture of 3,4-methylenedioxymethamphetamine (MDMA) on the synthesis of dopamine in the terminals of nigrostriatal and mesolimbic neurons was estimated by measuring the accumulation of 3,4-dihydroxyphenylalanine (DOPA) in the striatum and nucleus accumbens 30 min following the administration of the L-aromatic amino acid decarboxylase inhibitor, 3-hydroxybenzylhydrazine. MDMA produced an increase in DOPA accumulation in the striatum which was greater in magnitude and longer in duration than that in the nucleus accumbens. Although the concentrations of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in both the striatum and nucleus accumbens were reduced 3 h following an injection of MDMA (20 mg/kg), 5-HT and 5-HIAA concentrations were significantly reduced only in the striatum 7 days after the administration of MDMA. Pretreatment with a 5-HT2 antagonist, ketanserin, significantly attenuated the reduction in 5-HT concentration in the striatum 3 h following MDMA administration and completely blocked 5-HT depletion at 7 days post administration. Moreover, ketanserin completely blocked MDMA-induced DOPA accumulation in the striatum. The results obtained in these studies suggest that MDMA activates nigrostriatal dopaminergic pathways via 5-HT2 receptors. In addition, these data are supportive of the hypothesis that dopamine plays a role in MDMA-induced 5-HT depletion.  相似文献   

12.
The authors investigated the protective effects of a novel astrocyte-modulating agent, arundic acid, in a 1-methyl-4-phenyl-1,2,3,6-tetrahyropyridine (MPTP) mouse model of Parkinson’s disease. Male mice received four intraperitoneal (i.p.) injections of MPTP (20 mg/kg) at 2 h intervals. The content of dopamine and its metabolites in the striatum was reduced markedly 7 days after MPTP treatment. The delayed treatment with arundic acid (30 mg/kg, i.p.) administered 3, 4, 5 and 6 days after MPTP treatment did not affect the depletion of dopamine and its metabolites in the striatum. Our immunohistochemical study with anti-tyrosine hydroxylase antibody, anti-neuronal nuclei antibody, anti-glial fibrillary acidic protein antibody, anti-S100β antibody and anti-nestin antibody showed that the delayed treatment with arundic acid had a protective effect against MPTP-induced neuronal damage in the striatum and the substantia nigra of mice. Furthermore, this agent ameliorated the severe reductions in number of isolectin reactive microglia in the striatum and the substantia nigra 7 days after MPTP treatment. These results demonstrate that the inhibition of S100β synthesis in astrocytes may be the major component of the beneficial effect of arundic acid. Thus, our present findings provide that the therapeutic strategies targeted to astrocytic modulation with arundic acid offers a great potential for restoring the functional capacity of the surviving dopaminergic neurons in individuals affected with Parkinson’s disease.  相似文献   

13.
The higher incidence of cardiotoxicity of doxorubicin (DOX)/paclitaxel (PTX) combination compared with DOX alone remains to be a major obstacle against effective chemotherapeutic treatment. We investigated the effect of sequence and time interval between administration of both drugs on the severity of cardiotoxicity of the combination. Male Wistar rats were divided into seven groups. DOX was administered intraperitoneally (i.p.) at a single dose of 5 mg x kg(-1) every other 2 days, 2 doses per week for a total cumulative dose of 20 mg x kg(-1). PTX was administered by an i.p. route at a dose of 20 mg x kg(-1) every other 2 days. Both drugs were injected either alone or sequentially in combination. In one case, DOX preceded PTX by 30 min and 24 h and in the other case, PTX preceded DOX by 30 min and 24 h. Cardiotoxicity was evaluated by both biochemical and histopathological examination, 48 h after the last DOX dose. DOX-induced cardiotoxicity was manifested by abnormal biochemical changes including marked increases in serum creatine phosphokinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-Px), and aspartate aminotransferase (AST) activity levels. Myocardial tissue from DOX-treated rats showed significant increases in malondialdehyde (MDA) production and total nitrate/nitrite (NOx) levels, parallel with depletion of "endogenous antioxidant reserve," including GSH contents and GSH-Px activity level. PTX treatment produced significant changes in the biochemical parameters measured by a lower magnitude than those changes produced by DOX alone. Combination of both drugs resulted in aggravation of DOX-induced cardiotoxicity regardless the sequence and time interval between administration of either drug. Administration of PTX 30 min and 24 h after DOX treatment showed exaggeration of combination-induced cardiotoxicity compared with the reverse sequence. This exacerbation was manifested by much more pronounced changes in serum and cardiac tissue parameters measured. Histopathological examination of ventricles of rat's heart revealed that DOX treatment produced myo-cytolysis and myocardial necrosis. Administration of PTX following DOX treatment showed extensive myocardial necrosis compared with those rats treated with either DOX alone or the reverse sequence of administration. Moreover, rats treated with PTX 24 h after DOX treatment showed exaggeration of the combination-induced cardiotoxicity. In conclusion, PTX might synergistically aggravate DOX-induced cardiotoxicity. The effect might be much more pronounced with those rats treated with PTX 24 h after DOX treatment.  相似文献   

14.
The influence of thyroid hormone administration on liver glutathione (GSH) extraction in the isolated perfused liver was studied in fed rats for a period of 1–7 days following a single dose of 0.1 mg 3,5,3′-triiodothyronine (T3)/kg. T3 treatment led to an early and transient calorigenic response, as well as an enhancement in liver GSH removal, reaching a maximal effect at 2 days after hormone administration, which was normalized in the 3- to 7-day period studied. Addition of the γ-glutamyltransferase (γ-GT) inhibitor DL-serineborate (4 mM) to the perfusate abolished the increase in the hepatic removal of GSH elicited by T3, and enhanced the sinusoidal concentration of GSH, studied at 2 days after hormone administration. These data support the role of hepatic basolateral γ-GT ectoactivity in the depletion of portally added and liver-derived GSH as an adaptive response to recover GSH levels after reduction by T3-induced oxidative stress.  相似文献   

15.
p-Aminophenol (PAP) is a widely used industrial chemical and a known nephrotoxin. Recently, it was found to also cause hepatotoxicity and glutathione (GSH) depletion in mice. The exact mechanism of liver toxicity is not known. The aims of this study were to determine whether PAP can cause acute hepatotoxicity in hamsters and to further investigate the role of GSH in PAP-induced toxicity. PAP was administered ip to hamsters in doses of 200-800 mg/kg. Liver damage at 24 h after PAP administration was assessed by elevations in plasma enzyme activities and histopathologic examination. GSH and cysteine (Cys) levels in liver at 4 h were determined by HPLC. PAP decreased hepatic GSH concentration to 8% and Cys to 30% of vehicle control values. It increased plasma glutamic pyruvic transaminase (GPT) activity by 47-fold and sorbitol dehydrogenase (SDH) activity by 113-fold. PAP also caused severe centrilobular hepatocellular necrosis. 2(RS)-n-Propylthiazolidine-4(R)-carboxylic acid (PTCA), a Cys precursor, attenuated the PAP-induced decreases in hepatic sulfhydryl levels; GSH and Cys were 39% and 78% of vehicle controls, respectively. PTCA also attenuated the PAP-induced elevations in plasma enzyme activities and hepatic necrosis. It was concluded that PAP hepatotoxicity is associated with depletion of hepatic GSH and can be prevented by PTCA.  相似文献   

16.
Estradiol treatment administered systemically or directly to the dorsolateral striatum across two days impairs performance on a response task in which rats learn to make a specific body turn to locate food on a maze. Estradiol can act through both slow and rapid signaling pathways to regulate learning impairments, however it is impossible to dissociate the slow from the rapid contributions of estradiol following long exposures. To assess the rapid effects of estradiol on striatum-sensitive learning, we trained rats on a response learning task after either relatively short or long treatments of estradiol infused directly into the striatum. Three-month-old female rats were ovariectomized 21 days before training and received guide cannulae implanted bilaterally into the dorsolateral striatum. For short duration treatments, rats were given bilateral infusions (0.5 μl) of 17β-estradiol-sulfate (0, 5, 50, or 500 nM in aCSF-vehicle) either 2 h or 15 min prior to training. For long duration treatments, rats received a series of estradiol infusions (500 nM) at 48, 24, and 2 h prior to training. Replicating previous findings (Zurkovsky et al., 2007), intra-striatal estradiol treatments given for two days prior to training impaired response learning. Estradiol-induced impairments in performance were also demonstrated 2 h, but not 15 min, after single infusions. Thus, estradiol acts within hours of exposure in the striatum, a structure lacking classical estrogen receptors, to impair response learning.  相似文献   

17.
Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.  相似文献   

18.
Rats received 7 daily injections with baclofen (40 mg/kg), GBL (750 mg/kg) or HA-966 (100 mg/kg). Dopamine (DA) was measured in the striatum and olfactory tubercle (OT) of rats, sacrificed 0.5 h or 1 h after the last injection. Marked tolerance and cross-tolerance for the DA-elevating effect of these drugs was seen in the striatum, but not in OT. When on day 7 a unilateral lesion of the nigrostriatal pathway was made, also some tolerance to the DA increase in the striatum on the lesioned side was seen in HA-966-pretreated rats, but it was small compared to the tolerance after an additional drug administration in non-lesioned animals. A low dose of apomorphine (0.25 mg/kg, i.p.) had no effect on DA, dihydroxyphenylacetic acid DOPAC) or homovanillic acid (HVA) levels in the lesioned striata, whether the rats had been pretreated for 6 days with HA-966 or not. However, this dose of apomorphine had a significantly more lowering effect on striatal DOPAC and HVA levels on the unlesioned side of HA-966 pretreated rats. The results show that tolerance develops to the increase of DA synthesis, which is possibly receptor-mediated. This tolerance develops more readily in the striatum than in the olfactory tubercle.  相似文献   

19.
Neuroprotective effect of honokiol (HK), orally administered, on oxidative damage in the brain of mice challenged with N-methyl-d-aspartic acid (NMDA) was examined. HK (1-100 mg/kg) was administered to Institute of Cancer Research (ICR) male mice through a gavage for 3 days consecutively, and on the third day, NMDA (150 mg/kg) was intraperitoneally (i.p.) administered. Administration of NMDA, causing a lethality of approximately 60%, resulted in a significant decrease of total glutathione (GSH) level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. Meanwhile, oral administration of HK (> or = 3 mg/kg) for 3 days reduced the lethality (60%) in NMDA-treated group to 10% level, and alleviated the behavioral signs of NMDA neurotoxicity. Moreover, HK pretreatment restored the levels of total GSH and TBARS in the brain tissue to control levels (p<0.01). Additionally, GSH peroxidase activity in cytosolic portion of brain homogenate was also restored significantly (p<0.01), whereas GSH reductase activity was not. Separately, compared to vehicle-treated control, no significant changes in body and brain weight were observed in mice administered with HK. Based on these results, oral intake of HK is suggested to prevent oxidative stress in the brain of mice.  相似文献   

20.
The induction of chromosome aberrations, micronuclei and SCEs was studied in hepatocytes of F344 rats exposed in vivo to hepatocarcinogens. Hepatocytes were isolated and allowed to proliferate in Williams' medium E supplemented with epidermal growth factor. Cells were fixed after a culture period of 48 h. Oral administration of dimethylnitrosamine at doses of 2.5-20 mg/kg body weight (bw) induced (1) chromosome aberrations in up to 27% of the metaphase cells 2-48 h after its administration, (2) SCEs with a frequency of up to 0.9 per chromosome 2-48 h after its administration, and (3) micronuclei in up to 2.9% of the cells 16-48 h after its administration. Oral administration of 2-acetylaminofluorene at doses of 6.25-200 mg/kg bw induced (1) chromosome aberrations in up to 35% of the metaphase cells after 2-48 h, (2) SCEs at up to 0.9 per chromosome and (3) micronuclei in up to 2.5% of the cells with a maximum after 4 h. Oral administration of CCl4, a non-genotoxic hepatocarcinogen, at a dose of 1600 mg/kg bw did not induce chromosome aberrations, SCEs or micronuclei within 4-72 h. Intraperitoneal injections of Trp-P-1, Glu-P-1, MeIQx, IQ and nitro-IQ resulted in chromosome aberrations in up to 16% of the metaphase cells and SCEs at up to 0.9 per chromosome, while injections of Trp-P-2 and Glu-P-2 produced SCEs at up to 0.7 and 1.1 per chromosome, respectively. The present method of in vivo cytogenetic assay using rats without partial hepatectomy or mitogen treatment in vivo should be useful for evaluating the tumor-initiating activities of hepatocarcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号