共查询到20条相似文献,搜索用时 0 毫秒
1.
Ahmad R. Naghsh-Nilchi Mostafa Aghashahi 《Biomedical signal processing and control》2010,5(2):147-157
In this paper, a new approach based on eigen-systems pseudo-spectral estimation methods, namely Eigenvector (EV) and MUSIC, and Multiple Layer Perceptron (MLP) neural network is introduced. In this approach, the calculated EEG (electroencephalogram) spectrum is divided into smaller frequency sub-bands. Then, a set of features, {maximum, entropy, average, standard deviation, mobility}, are extracted from these sub-bands. Next, incorporating a set of the EEG time domain features {standard deviation, complexity measure} with the spectral feature set, a feature vector is formed. The feature vector is then fetched into a MLP neural network to classify the signal into the following three states: normal (healthy), epileptic patient signal in a seizure-free interval (inter-ictal), and epileptic patient signal in a full seizure interval (ictal). The experimental results show that the classification of the EEG signals maybe achieved with approximately 97.5% accuracy and the variance of 0.095% using an available public EEG signals database. The results are among the best reported methods for classifying the three states aforementioned. This is a high speed with high accuracy as well as low misclassifying rate method so it can make the practical and real-time detection of this chronic disease feasible. 相似文献
2.
3.
Zbinden C 《Journal of computational neuroscience》2011,31(2):285-304
In this paper, we highlight the topological properties of leader neurons whose existence is an experimental fact. Several
experimental studies show the existence of leader neurons in population bursts of activity in 2D living neural networks (Eytan
and Marom, J Neurosci 26(33):8465–8476, 2006; Eckmann et al., New J Phys 10(015011), 2008). A leader neuron is defined as a neuron which fires at the beginning of a burst (respectively network spike) more often
than we expect by chance considering its mean firing rate. This means that leader neurons have some burst triggering power
beyond a chance-level statistical effect. In this study, we characterize these leader neuron properties. This naturally leads
us to simulate neural 2D networks. To build our simulations, we choose the leaky integrate and fire (lIF) neuron model (Gerstner
and Kistler 2002; Cessac, J Math Biol 56(3):311–345, 2008), which allows fast simulations (Izhikevich, IEEE Trans Neural Netw 15(5):1063–1070, 2004; Gerstner and Naud, Science 326:379–380, 2009). The dynamics of our lIF model has got stable leader neurons in the burst population that we simulate. These leader neurons
are excitatory neurons and have a low membrane potential firing threshold. Except for these two first properties, the conditions
required for a neuron to be a leader neuron are difficult to identify and seem to depend on several parameters involved in
the simulations themselves. However, a detailed linear analysis shows a trend of the properties required for a neuron to be
a leader neuron. Our main finding is: A leader neuron sends signals to many excitatory neurons as well as to few inhibitory
neurons and a leader neuron receives only signals from few other excitatory neurons. Our linear analysis exhibits five essential
properties of leader neurons each with different relative importance. This means that considering a given neural network with
a fixed mean number of connections per neuron, our analysis gives us a way of predicting which neuron is a good leader neuron
and which is not. Our prediction formula correctly assesses leadership for at least ninety percent of neurons. 相似文献
4.
An object extraction problem based on the Gibbs Random Field model is discussed. The Maximum a'posteriori probability (MAP) estimate of a scene based on a noise-corrupted realization is found to be computationally exponential in nature. A neural network, which is a modified version of that of Hopfield, is suggested for solving the problem. A single neuron is assigned to every pixel. Each neuron is supposed to be connected only to all of its nearest neighbours. The energy function of the network is designed in such a way that its minimum value corresponds to the MAP estimate of the scene. The dynamics of the network are described. A possible hardware realization of a neuron is also suggested. The technique is implemented on a set of noisy images and found to be highly robust and immune to noise. 相似文献
5.
Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature. 相似文献
6.
An algorithm using feedforward neural network model for determining optimal substrate feeding policies for fed-batch fermentation process is presented in this work. The algorithm involves developing the neural network model of the process using the sampled data. The trained neural network model in turn is used for optimization purposes. The advantages of this technique is that optimization can be achieved without detailed kinetic model of the process and the computation of gradient of objective function with respect to control variables is straightforward. The application of the technique is demonstrated with two examples, namely, production of secreted protein and invertase. The simulation results show that the discrete-time dynamics of fed-batch bioreactor can be satisfactorily approximated using a feedforward sigmoidal neural network. The optimal policies obtained with the neural network model agree reasonably well with the previously reported results. 相似文献
7.
This paper describes an experimental investigation concerning the use of neural networks to achieve the non-linear control of a continuous stirred tank fermenter. The influent dilution rate and the substrate concentration have been selected as control variables. The backpropagation learning algorithm has been used for both off-line and on-line identification of the inverse model which provides the control action. Experimental results show the performance and the implementation simplicity of this control approach. 相似文献
8.
Chakravarthy VS Gupte N Yogesh S Salhotra A 《International journal of neural systems》2008,18(2):157-164
Synchronization of chaotic low-dimensional systems has been a topic of much recent research. Such systems have found applications for secure communications. In this work we show how synchronization can be achieved in a high-dimensional chaotic neural network. The network used in our studies is an extension of the Hopfield Network, known as the Complex Hopfield Network (CHN). The CHN, also an associative memory, has both fixed point and limit cycle or oscillatory behavior. In the oscillatory mode, the network wanders chaotically from one stored pattern to another. We show how a pair of identical high-dimensional CHNs can be synchronized by communicating only a subset of state vector components. The synchronizability of such a system is characterized through simulations. 相似文献
9.
István Albert Juilee Thakar Song Li Ranran Zhang Réka Albert 《Source code for biology and medicine》2008,3(1):1-8
Background
We present a C++ class library for Monte Carlo simulation of molecular systems, including proteins in solution. The design is generic and highly modular, enabling multiple developers to easily implement additional features. The statistical mechanical methods are documented by extensive use of code comments that – subsequently – are collected to automatically build a web-based manual.Results
We show how an object oriented design can be used to create an intuitively appealing coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that can calculate protein protonation states. We further discuss performance issues related to high level coding abstraction.Conclusion
C++ and the Standard Template Library (STL) provide a high-performance platform for generic molecular modeling. Automatic generation of code documentation from inline comments has proven particularly useful in that no separate manual needs to be maintained. 相似文献10.
MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference. 相似文献
11.
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range. 相似文献
12.
Najafabadi HS Goodarzi H Torabi N Banihosseini SS 《Journal of theoretical biology》2006,238(3):657-665
Predicting the secondary and tertiary structure of RNAs largely depends on our capabilities in estimating the thermodynamics of RNA duplexes. In this work, an expanded nearest-neighbor model, designated INN-48, is established. The thermodynamic parameters of this model are predicted using both multiple linear regression analysis and neural network analysis. It is suggested that due to the increase in the number of parameters and the insufficiency of the existing data, neural network analysis results in more reliable predictions. Furthermore, it is suggested that INN-48 can be used to estimate the thermodynamics of RNA duplex formation for longer sequences, whereas INN-HB, the previous model on which INN-48 is based, can be used for short sequences. 相似文献
13.
Existing neural network models are capable of tracking linear trajectories of moving visual objects. This paper describes an additional neural mechanism, disfacilitation, that enhances the ability of a visual system to track curved trajectories. The added mechanism combines information about an object's trajectory with information about changes in the object's trajectory, to improve the estimates for the object's next probable location. Computational simulations are presented that show how the neural mechanism can learn to track the speed of objects and how the network operates to predict the trajectories of accelerating and decelerating objects. 相似文献
14.
Epilepsy is characterized by paradoxical patterns of neural activity. They may cause different types of electroencephalogram (EEG), which dynamically change in shape and frequency content during the temporal evolution of seizure. It is generally assumed that these epileptic patterns may originate in a network of strongly interconnected neurons, when excitation dominates over inhibition. The aim of this work is to use a neural network composed of 50 x 50 integrate-and-fire neurons to analyse which parameter alterations, at the level of synapse topology, may induce network instability and epileptic-like discharges, and to study the corresponding spatio-temporal characteristics of electrical activity in the network. We assume that a small group of central neurons is stimulated by a depolarizing current (epileptic focus) and that neurons are connected via a Mexican-hat topology of synapses. A signal representative of cortical EEG (ECoG) is simulated by summing the membrane potential changes of all neurons. A sensitivity analysis on the parameters describing the synapse topology shows that an increase in the strength and in spatial extension of excitatory vs. inhibitory synapses may cause the occurrence of travelling waves, which propagate along the network. These propagating waves may cause EEG patterns with different shape and frequency, depending on the particular parameter set used during the simulations. The resulting model EEG signals include irregular rhythms with large amplitude and a wide frequency content, low-amplitude high-frequency rapid discharges, isolated or repeated bursts, and low-frequency quasi-sinusoidal patterns. A slow progressive temporal variation in a single parameter may cause the transition from one pattern to another, thus generating a highly non-stationary signal which resembles that observed during ECoG measurements. These results may help to elucidate the mechanisms at the basis of some epileptic discharges, and to relate rapid changes in EEG patterns with the underlying alterations at the network level. 相似文献
15.
Blood cell identification using a simple neural network 总被引:1,自引:0,他引:1
Khashman A 《International journal of neural systems》2008,18(5):453-458
Classification of blood cell types can be time consuming and susceptible to error due to the different morphological features of the cells. This paper presents a blood cell identification system that simulates a human visual inspection and identification of the three blood cell types. The proposed system uses global pattern averaging to extract cell features, and a neural network to classify the cell type. Two neural networks are investigated and a comparison between these networks is drawn. Experimental results suggest that the proposed system provides fast, simple and efficient identification which can be used in automating laboratory reporting. 相似文献
16.
Improving the performance of DomainParser for structural domain partition using neural network 总被引:2,自引:0,他引:2
Structural domains are considered as the basic units of protein folding, evolution, function and design. Automatic decomposition of protein structures into structural domains, though after many years of investigation, remains a challenging and unsolved problem. Manual inspection still plays a key role in domain decomposition of a protein structure. We have previously developed a computer program, DomainParser, using network flow algorithms. The algorithm partitions a protein structure into domains accurately when the number of domains to be partitioned is known. However the performance drops when this number is unclear (the overall performance is 74.5% over a set of 1317 protein chains). Through utilization of various types of structural information including hydrophobic moment profile, we have developed an effective method for assessing the most probable number of domains a structure may have. The core of this method is a neural network, which is trained to discriminate correctly partitioned domains from incorrectly partitioned domains. When compared with the manual decomposition results given in the SCOP database, our new algorithm achieves higher decomposition accuracy (81.9%) on the same data set. 相似文献
17.
Advances in digital technologies have allowed us to generate more images than ever. Images of scanned documents are examples of these images that form a vital part in digital libraries and archives. Scanned degraded documents contain background noise and varying contrast and illumination, therefore, document image binarisation must be performed in order to separate foreground from background layers. Image binarisation is performed using either local adaptive thresholding or global thresholding; with local thresholding being generally considered as more successful. This paper presents a novel method to global thresholding, where a neural network is trained using local threshold values of an image in order to determine an optimum global threshold value which is used to binarise the whole image. The proposed method is compared with five local thresholding methods, and the experimental results indicate that our method is computationally cost-effective and capable of binarising scanned degraded documents with superior results. 相似文献
18.
A new learning algorithm for space invariant Uncoupled Cellular Neural Network is introduced. Learning is formulated as an optimization problem. Genetic Programming has been selected for creating new knowledge because they allow the system to find new rules both near to good ones and far from them, looking for unknown good control actions. According to the lattice Cellular Neural Network architecture, Genetic Programming will be used in deriving the Cloning Template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown. 相似文献
19.
Adaptive control of mobile robots using a neural network 总被引:1,自引:0,他引:1
A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results. 相似文献
20.
Adaptive control for mimo uncertain nonlinear systems using recurrent wavelet neural network 总被引:1,自引:0,他引:1
Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort. 相似文献