首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsal cord, dorsal root, and focal potentials in response to peripheral nerve stimulation were investigated in rats with local depression of inhibition in the left or right half of the lumbar segments produced by the action of tetanus toxin. The investigation was carried out at the stage of poisoning when excitation of the neuron population with disturbed inhibition caused generalized excitation of spinal and bulbar motoneurons. Experiments on spinal animals showed that if a cutaneous nerve is stimulated on the side affected by the toxin these responses have a greater amplitude and a much longer duration than those evoked by stimulation of the opposite nerve or responses in healthy rats. The maximal increase in amplitude and duration of the negative component of the focal potential corresponding to the time of the increased P wave of the dorsal cord potential was found in the ventral quadrant on the side affected by the toxin. Besides evoked focal potentials, spontaneous rhythmic negative waves also were recorded in this area. The mechanisms of spread of seizure activity from the focus of depressed inhibition are discussed and the structures generating spreading seizure activity are identified.  相似文献   

2.
During mastication, reflexes are modulated and sensory transmission is altered in interneurons and ascending pathways of the rostral trigeminal sensory complex. The current experiment examines the modulation of sensory transmission through the most caudal part of the trigeminal sensory system, the medullary dorsal horn, during fictive mastication produced by cortical stimulation. Extracellular single unit activity was recorded from the medullary dorsal horn, and multiple unit activity was recorded from the trigeminal motor nucleus in anesthetized, paralyzed rabbits. The masticatory area of sensorimotor cortex was stimulated to produce rhythmic activity in the trigeminal motor nucleus (fictive mastication). Activity in the dorsal horn was compared in the presence and absence of cortical stimulation. Fifty-two percent of neurons classified as low threshold and 83% of neurons receiving noxious inputs were influenced by cortical stimulation. The cortical effects were mainly inhibitory, but 21% of wide dynamic range and 6% of low threshold cells were excited by cortical stimulation. The modulation produced by cortical stimulation, whether inhibitory or excitatory, was not phasically related to the masticatory cycle. It is likely that, when masticatory movements are commanded by the sensorimotor cortex, the program includes tonic changes in sensory transmission through the medullary dorsal horn.  相似文献   

3.
In experiments on 8 rabbits and 12 rats changes in electrograms of the visual cortex of alert animals were studied under photic stimulation in conditions of pharmacological action on monoamine (MA) brain systems. After injection of MA precursors (5-oxitriptophane and d, 1-dioxiphenylalanine) following phenomena were observed: a) decrease of the amplitude of the averaged evoked potentials to rhythmic photic stimuli (1-20 imp. sec.-1); b) an enhancement of fast (15-25 Hz) oscillations in the cortical spontaneous electrical activity and weakening and modification of the effects of the blockader of synthesis of MA-alpha-methyl-dioxiphenylalanine. Under light stimulation potentiation of MA precursors effects was observed in the frequency spectra of electrocorticograms. In the same conditions the specificity of action of cathecholamines precursor was revealed in the form of an increase of power of rhythms of 5-7 Hz and it; decrease in 2-3 Hz. Possible mechanisms of the revealed phenomena are discussed.  相似文献   

4.
The intracellular activity of pyramidal tract neurons was studied during electrical stimulation of ventrolateral and ventroposterolateral thalamic nuclei in acute experiments on cats immobilized by myorelaxants. Somatic action potentials were observed and spontaneous spikes were also produced by single and rhythmic stimulation of the thalamic nuclei at the rate of 8–14 Hz, by iontophoretic application of strychnine, and by intracellular depolarizing current pulses. These potentials had a relatively low and variable amplitude of 5–60 mV and are presumed to be dendritic action potentials. It is postulated that these variable potentials arise in the dendrites of pyramidal neurons with multiple zones generating such activity. No interaction was observed where somatic and dendritic action potentials occur simultaneously. The possible functional role of dendritic action potentials is discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 435–443, July–August, 1986.  相似文献   

5.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

6.
The inhibitory restraint necessary to suppress aberrant activity can fail when inhibitory neurons cease to generate action potentials as they enter depolarization block. We investigate possible bifurcation structures that arise at the onset of seizure-like activity resulting from depolarization block in inhibitory neurons. Networks of conductance-based excitatory and inhibitory neurons are simulated to characterize different types of transitions to the seizure state, and a mean field model is developed to verify the generality of the observed phenomena of excitatory-inhibitory dynamics. Specifically, the inhibitory population’s activation function in the Wilson-Cowan model is modified to be non-monotonic to reflect that inhibitory neurons enter depolarization block given strong input. We find that a physiological state and a seizure state can coexist, where the seizure state is characterized by high excitatory and low inhibitory firing rate. Bifurcation analysis of the mean field model reveals that a transition to the seizure state may occur via a saddle-node bifurcation or a homoclinic bifurcation. We explain the hysteresis observed in network simulations using these two bifurcation types. We also demonstrate that extracellular potassium concentration affects the depolarization block threshold; the consequent changes in bifurcation structure enable the network to produce the tonic to clonic phase transition observed in biological epileptic networks.  相似文献   

7.
The action of a water-soluble benzodiazepine midazolam (0.1 and 1 mg/kg i.p.) was tested against three models of spike-and-wave rhythm in rats: rhythmic metrazol activity (a model of human absence seizures), minimal metrazol seizures, and epileptic afterdischarges induced by low-frequency cortical stimulation (probably models of human myoclonic seizures). Midazolam was able to reduce spike-and-wave activity in all three models, but there were quantitative differences: the lower dose was effective only against rhythmic metrazol activity, but its action against two other models was negligible, whereas the higher dose of midazolam resulted in significant effects in all three models. These quantitative differences are not sufficient to prove our hypothesis that the spike-and-wave rhythm represents different phenomena in various models. A spread of epileptic activity into brain structures other than the thalamocortical system determines the type of epileptic seizures.  相似文献   

8.
Cortical dysplasia is the most common etiology of intractable epilepsy. Both excitability changes in cortical neurons and neural network reconstitution play a role in cortical dysplasia epileptogenesis. Recent research shows that the axon initial segment, a subcompartment of the neuron important to the shaping of action potentials, adjusts its position in response to changes in input, which contributes to neuronal excitability and local circuit balance. It is unknown whether axon initial segment plasticity occurs in neurons involved in seizure susceptibility in cortical dysplasia. Here, we developed a “Carmustine”- “pilocarpine” rat model of cortical dysplasia and show that it exhibits a lower seizure threshold, as indicated by behavior studies and electroencephalogram monitoring. Using immunofluorescence, we measured the axon initial segment positions of deep L5 somatosensory neurons and show that it is positioned closer to the soma after acute seizure, and that this displacement is sustained in the chronic phase. We then show that Nifedipine has a dose-dependent protective effect against axon initial segment displacement and increased seizure susceptibility. These findings further our understanding of the pathophysiology of seizures in cortical dysplasia and suggests Nifedipine as a potential therapeutic agent.  相似文献   

9.
Acetylcholine (ACh) contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1) that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs) in V1 of rats during a 4–8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine), nicotinic (mecamylamine), α7 (methyllycaconitine), and NMDA (CPP) receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56%) during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while α7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.  相似文献   

10.
Characteristics of neuronal activity in an isolated cortical slab were investigated during the onset of seizure spikes induced by frequent and powerful stimulation of the slab during experiments on unanesthetized immobilized cats. A high degree of coordination between the activity of cellular elements was found in the focus of epileptiform activity studied: convulsive shifts in membrane potential exactly corresponding to electrocorticograms of convulsive activity waves were observed in all neurons studied using intracellular techniques. No action potentials occurred in the soma of any of these neurons, moreover. Bursting spike discharges were recorded from neurons of the isolated slab at the same time. Findings from extra- and intracellular recordings of activity in the same neurons showed that action potentials are generated during convulsive activity at certain trigger zones remote from the cell in question without involving the soma, from which convulsive shifts in membrane potentials were recorded simultaneously. Mechanisms possibly underlying the generation of spike activity in neurons of the isolated slab undergoing development of generalized convulsive state are discussed.I. I. Mechnikov State University, Odessa. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 357–365, May–June, 1988.  相似文献   

11.
Reorganization of background electric activity of newborns brain under the action of rhythmic photostimulation was studied in children of the first month of life in a state of quiet alertness by the method of age transversal slides (I, II, III-IV weeks of life). At the age of III-IV weeks, the repeated rhythmic light stimulation elicits a stable reorganization of the background activity in the theta-frequency range in the central areas at 5 Hz stimulation and in delta-frequency range in the occipital areas at 2 Hz stimulation. Characteristics of spatial manifestation of background activity reorganization in various cortical areas reflect frequency-specific character of newborns' cerebral cortex reactivity, appearing to the end of the first month of postnatal development.  相似文献   

12.
Intracellular response in neurons and glial cells of an isolated cortical slab to direct electrical stimulation of the slab following surface application of strychnine was investigated during experiments on immobilized unanesthetized cats. Strychnine induced single epileptiform discharges and after-discharges in the slab and in the neurons it contained in the form of large-scale paroxysmal depolarization shifts (PDS) in membrane potential (MP). Spontaneous summated epileptiform discharges and neuronal activity in the units examined were not very synchronized. Electrical stimulation induced generalized paroxysmal activity in the isolated slab. Neuronal PDS were accompanied by refractory periods, onset of which did not depend on MP level. Strychnine increased the number of neurons manifesting background activity in which action potentials were generated by rhythmic depolarizing MP waves of extrasynaptic origin. Epileptiform response in strychninized cortical isolated slabs to presentation of single stimuli is accompanied by major depolarization shifts in the MP of glial cells. Paroxysmal excitation is thought to be triggered in strychninized isolated cortical slabs by extrasynaptic factors and closely linked to altered concentration of extracellular potassium.I. I. Mechnikov University, Odessa. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 23–29, January–February, 1990.  相似文献   

13.
The effects of electroconvulsive shock (ECS) on the flash visual evoked potential (FVEP) were studied in the awake albino rat. Immediately after the induction of generalised seizure activity, the FVEP was totally abolished although accidentally averaged rhythmic epileptiform activity was often present in the trace. During the second recording, a potential had reappeared but this response was suspected of being a superior colliculus FVEP masquerading as a cortical response. By the third recording, the genuine cortical FVEP had returned, albeit with an abnormally large amplitude. The waveform subsequently remained significantly distorted although it had regained an approximately normal morphology within 6–7 min of the administration of ECS. It was not possible to identify the principal site of action of ECS but it was concluded that ECS may impact on activity generated at more than one location within the optic pathways. The present findings are compared with a number of previous animal and human studies where the FVEP was apparently preserved following ECS and attempts are made to explain the discrepancy in results. The relevance of the present findings for understanding the pathophysiology of electrical stunning and of the loss or impairment of consciousness during generalised epileptic seizures is also discussed.  相似文献   

14.
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.  相似文献   

15.
Local field potentials (LFPs) are widely used to study the function of local networks in the brain. They are also closely correlated with the blood-oxygen-level-dependent signal, the predominant contrast mechanism in functional magnetic resonance imaging. We developed a new laminar cortex model (LCM) to simulate the amplitude and frequency of LFPs. Our model combines the laminar architecture of the cerebral cortex and multiple continuum models to simulate the collective activity of cortical neurons. The five cortical layers (layer I, II/III, IV, V, and VI) are simulated as separate continuum models between which there are synaptic connections. The LCM was used to simulate the dynamics of the visual cortex under different conditions of visual stimulation. LFPs are reported for two kinds of visual stimulation: general visual stimulation and intermittent light stimulation. The power spectra of LFPs were calculated and compared with existing empirical data. The LCM was able to produce spontaneous LFPs exhibiting frequency-inverse (1/ƒ) power spectrum behaviour. Laminar profiles of current source density showed similarities to experimental data. General stimulation enhanced the oscillation of LFPs corresponding to gamma frequencies. During simulated intermittent light stimulation, the LCM captured the fundamental as well as high order harmonics as previously reported. The power spectrum expected with a reduction in layer IV neurons, often observed with focal cortical dysplasias associated with epilepsy was also simulated.  相似文献   

16.
The present experiments address the question of how stimulation parameters, which evoke action potentials in neuronal cell bodies, influence growth cone movements of different identified neurons. The motility of growth cones of Helisoma buccal neurons B19 and B4 was monitored while somata were stimulated simultaneously via an intracellular microelectrode. The findings show that the responses of growth cones of B19 and B4 contain components that are common as well as unique to each neuron. Whereas rates of growth cone advance were suppressed in a graded fashion by stimulus frequencies beyond a threshold of 2 s-1 for both neurons, B4 was more sensitive to electrical stimulation and exhibited a new response, namely, growth rates were enhanced during the poststimulation recovery period after stimulation at specific frequencies. Thus, electrical activity can result in enhancement as well as in inhibition of growth cone movement. Changes in number of filopodia on B19 and B4 were graded also, with B4 again displaying greater sensitivity. The frequency dependence of filopodia compared to growth rate changes was different and suggests a possible dissociation between filopodial activity and growth cone motility. Patterned electrical activity produced effects similar to constant stimulation for B19 growth cones, whereas it decreased the threshold frequency and eliminated the growth enhancement effect for B4. Taken together, these data demonstrate that the quantitative features of electrical activity as well as intrinsic properties of neurons both determine the growth cone response to changes in neuronal activity.  相似文献   

17.
Kawai F 《Chemical senses》1999,24(6):701-704
Adrenaline is known to affect action potentials induced by the step current injection in an olfactory receptor cell (ORC). It is unclear, however, whether it also modulates action potentials induced by odor stimuli. In the present study, the effects of adrenaline on action potentials in ORCs were investigated quantitatively using a computer simulation. Adrenaline suppressed simulated action potentials induced by step current injection near threshold, and increased spike frequency to strong stimuli by 8-25%. Similar effects were obtained by applying a pseudo-transduction current to a model cell. Surprisingly, adrenaline markedly increased spike frequency to strong stimuli by 30-140%, and increased the slope of the stimulus-response relation compared with that of the step current injection. This suggests that adrenaline enhances odorant contrast in olfactory perception by modulating signal encoding of ORCs.  相似文献   

18.
Krushinskii-Molodkina (KM) strain rats genetically predisposed to audiogenic convulsive reaction were given repeated camphor injections in gradually increasing doses (starting at the minimum threshold level required for seizures to occur) over a 4–5 month period. Animals were able to tolerate camphor at doses 3/2–3 times convulsion threshold level without seizure occurring once habituation to the action of this convulsant had been developed. At the same time, the cortical motor zone of strain KM rats acquired properties typical of an epileptic focus: spontaneous epileptiform firing peaks were noted in the background electrical activity of this zone. A decline in the parameter reflecting efficacy of the mechanisms underlying recurrent inhibition emerged in the cortical motor zone of strain KM rats receiving camphor from calculating the parameters of neuronal network from spectra of summated potentials (using the model of a neuronal network). It is suggested that the development of compensatory processes making it possible to avoid generalized seizure following administration of camphor in large doses is associated with intensification of inhibitory caudate function and attenuated hippocampal excitation.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 193–200, March–April, 1990.  相似文献   

19.
Postsynaptic potentials of 93 motoneurons of the masseter muscle evoked by stimulation of different branches of the trigeminal nerve were studied. Stimulation of the most excitable afferent fibers of the motor nerve of the masseter muscle evoked monosynaptic EPSPs with a latent period of 1.2–2.0 msec, changing into action potentials when the strength of stimulation was increased. A further increase in the strength of stimulation produced an antidromic action potential in the motoneurons with a latent period of 0.9 msec. In some motoneurons polysynaptic EPSPs and action potentials developed following stimulation of the motor nerve to the masseter muscle. The ascending phase of synaptic and antidromic action potentials was subdivided into IS and SD components, while the descending phase ended with definite depolarization and hyperpolarization after-potentials. Stimulation of cutaneous branches of the trigeminal nerve, and also of the motor nerve of the antagonist muscle (digastric) evoked IPSPs with a latent period of 2.7–3.5 msec in motoneurons of the masseter muscle. These results indicate the existence of functional connections between motoneurons of the masseter muscle and its proprioceptive afferent fibers, and also with proprioceptive afferent fibers of the antagonist muscle and cutaneous afferent fibers.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 3, pp. 262–268, November–December, 1969.  相似文献   

20.
Intensive non-specific inactivation of the cortex by means of its local cooling, in the cat anasthetized with nembutal, blocks in a similar way the early component of associative responses (ECAR) in the parietal area and the primary responses (PR) in the projection areas. In the case of local application of neurotropic drugs possessing specific and differentiated action on postsynaptic activity, the same ECAR changes require a somewhat higher concentration of the reagents as compared with the concentration that produces a similar PR transformation. The higher threshold of chemical sensitivity in ECAR than in the PR depends on the characteristics of the morpho-functional organization of the cortical formations. Dissimilar reactivity of the direct cortical response and of ECAR of the parietal area to the action of chemical drugs is related to the peculiarities of intracortical origin of these potentials which are due to the dissimilar nature of their generation in response to a direct and to a peripheral stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号