首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A survey of haploid chromosome numbers of 18 North American taxa of Oxalis section Ionoxalis was initiated to determine the relationship between ploidal level, geographic distribution, and the occurrence of tristyly and distyly. Although chromosome numbers in the section are variable, the majority of tristylous populations are diploid. Among the distylous taxa a greater diversity of ploidal levels exists, with the higher chromosome numbers predominating. In section Ionoxalis the majority of the tristylous taxa are geographically restricted endemics of southern Mexico, while the distylous taxa have more extensive distributions ranging to the north. The association of diploidy and geographic endemism in the majority of the tristylous taxa suggests that these species are relictual. A few widespread tristylous taxa are polyploid, and often somewhat weedy. The probable derivation of widespread polyploid species from the restricted diploid endemics of southern Mexico appears to have been accompanied by the evolution of distyly from tristyly. The frequent association of polyploidy and distyly in section Ionoxalis has apparently resulted from the concurrence of two evolutionary trends: increase in ploidal level and the derivation of distyly from tristyly.  相似文献   

2.
This paper documents the occurrence of allotriploidy (having three differentiated genomes) in gametophytes of two Southern Hemisphere Sphagnum species ( S. australe, S . falcatulum ). The pattern of microsatellite alleles indicates that both species are composed of a complex of allodiploid and allotriploid gametophytes, with the latter resulting from two allopolyploidization events. No haploid ( n  =  x ) gametophytes were found for either species. The ploidal levels suggested by the pattern of microsatellite alleles were confirmed by flow cytometry and Feulgen DNA image densitometry. For both S. australe and S. falcatulum , the respective allodiploid plants (or their ancestors) are one of the parent species of the allotriploid plants. This is the first report of triploidy in Sphagnum gametophytes occurring in nature and also the first report of the presence of three differentiated genomes in any bryophyte. It is also the first report of intersectional allopolyploidy in Sphagnum , with S. australe appearing to have parental species from Sphagnum sections Rigida and Sphagnum, and S. falcatulum having parental species from Sphagnum sections Cuspidata and Subsecunda . In both species, the allotriploid cytotypes were the most prevalent cytotype on the South Island of New Zealand. The pattern of microsatellite alleles shows the presence of two genetically distinct populations of allodiploid S. australe , possibly indicating multiple origins of polyploidy for that allodiploid cytotype. Morphological evidence is also highly indicative of recurrent polyploidy in the allotriploid cytotype of S. falcatulum . Allopolyploidy has clearly played a major evolutionary role in these two Southern Hemisphere taxa. This study, in conjunction with other recent research, indicates that allopolyploidy is a common, if not the predominant, form of polyploidy in Sphagnum .  相似文献   

3.
Polyploidy in arctic plants   总被引:13,自引:0,他引:13  
The Arctic is an excellent model system for the study of polyploidy. It is one the Earth's most polyploid‐rich areas, in particular of high‐level and recently evolved polyploids. Here we re‐address previous hypotheses on arctic polyploidy based on a new analysis of the circumarctic flora, and review recent molecular, cytological and reproductive studies. The frequency and level of polyploidy strongly increase northwards within the Arctic. We found no clear‐cut association between polyploidy and the degree of glaciation for the arctic flora as a whole, which contains many widespread species. However, for ‘arctic specialist’ taxa with restricted distributions, the frequency of diploids is much higher in the Beringian area, which remained largely unglaciated during the last ice age, than in the heavily glaciated Atlantic area. This result supports the hypothesis that polyploids are more successful than diploids in colonizing after deglaciation. There is abundant molecular evidence for recurrent formation of arctic polyploids at different scales in time and space. Examples are given of low‐level polyploids formed after the last glaciation and of repeated and successively more high‐level polyploidizations throughout the Quaternary. Recurrent polyploid origins, followed by interbreeding within and across ploidal levels, provide a major explanation for the taxonomic complexity of the arctic flora. In the well‐studied, recently deglaciated archipelago of Svalbard, most species are mainly self‐fertilizing or clonal. All Svalbard polyploids examined so far are genetic allopolyploids with fixed heterozygosity at isozyme loci. The level of heterozygosity in 65 taxa increases dramatically from diploids to high‐level polyploids. In the circumarctic area, there is evidence for numerous recently evolved sibling species within diploid taxonomic species. Rapid evolution of crossing barriers at the diploid level promotes further diversification after expansion from different refugia, and may provide new raw materials for allopolyploid formation. We conclude that the evolutionary success of polyploids in the Arctic may be based on their fixed‐heterozygous genomes, which buffer against inbreeding and genetic drift through periods of dramatic climate change. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 521–536.  相似文献   

4.
Effects of polyploidy on photosynthesis   总被引:2,自引:0,他引:2  
In polyploid plants the photosynthetic rate per cell is correlated with the amount of DNA per cell. The photosynthetic rate per unit leaf area is the product of the rate per cell times the number of photosynthetic cells per unit area. Therefore, the photosynthetic rate per unit leaf area will increase if there is a less than proportional increase in cell volume at higher ploidal levels, or if cell packing is altered to allow more cells per unit leaf area. In autopolyploids (Medicago sativa, C3 species, and Pennisetum americanum, C4 species) there is a doubling of photosynthesis per cell and of cell volume in the tetraploid compared to the diploid. However, there is a proportional decrease in number of cells per unit leaf area with this increase in ploidy such that the rate of photosynthesis per leaf area does not change. There is more diversity in the relationship between ploidal level (gene dosage) and photosynthetic rates per unit leaf area in allopolyploids. This is likely to reflect the effects of natural selection on leaf anatomy, and novel genetic interactions from contributed genomes which can occur with allopolyploidy. In allopolyploid wheat (C3 species) a higher cell volume per unit DNA at the higher ploidal level is negatively correlated with photosynthesis rate per unit leaf area. Although photosynthesis per cell increases with ploidy, photosynthesis per leaf area decreases, being lowest in the allohexaploid, cultivated bread wheat (Triticum aestivum). Alternatively, doubling of photosynthetic rate per cell with doubling of DNA, with apparent natural selection for decreased cell volume per unit DNA, results in higher rates of photosynthesis per leaf area in octaploid compared to tetraploid Panicum virgatum (C4) which may be a case of allopolyploidy. Similar responses probably occur in Festuca arundinacea. Therefore, in some systems anatomical factors affecting photosynthesis are also affected by ploidal level. It is important to evaluate that component as well as determining the effect on biochemical processes. Current information on polyploidy and photosynthesis in several species is discussed with respect to anatomy, biochemistry and bases for expressing photosynthetic rates.Abbreviations Chl chlorophyll - RuBPC ribulose-1,5-bisphosphate carboxylase  相似文献   

5.
Polyploid organisms have more than two sets of chromosomes, including autopolyploid via intraspecific genome doubling, and allopolyploid via merging genomes of distinct species by hybridization. Polyploid organisms are widespread in plants, indicating that polyploidy has some evolutionary advantages over its diploid ancestor. Actually, polyploidy is always tightly associated with hybrid vigor and adaptation to adverse environmental conditions. However, why polyploidy can develop such advantages is poorly known. MicroRNAs (miRNAs) are endogenous ~21?nt small RNAs which can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. MicroRNAs are essential for cell development, differentiation, signal transduction, and show an adaptive response to biotic and abiotic stresses. Environmental stresses cause plants to over- or under-express certain miRNAs or synthesize new miRNAs to cope with stress. We have here reviewed our current knowledge on the molecular mechanisms, which can account for the evolutionary advantages of polyploidy over its diploid ancestor from genome-wide gene expression and microRNAs expression perspectives.  相似文献   

6.
A Madlung 《Heredity》2013,110(2):99-104
Polyploidy, the condition of possessing more than two complete genomes in a cell, has intrigued biologists for almost a century. Polyploidy is found in many plants and some animal species and today we know that polyploidy has had a role in the evolution of all angiosperms. Despite its widespread occurrence, the direct effect of polyploidy on evolutionary success of a species is still largely unknown. Over the years many attractive hypotheses have been proposed in an attempt to assign functionality to the increased content of a duplicated genome. Among these hypotheses are the proposal that genome doubling confers distinct advantages to a polyploid and that these advantages allow polyploids to thrive in environments that pose challenges to the polyploid''s diploid progenitors. This article revisits these long-standing questions and explores how the integration of recent genomic developments with ecological, physiological and evolutionary perspectives has contributed to addressing unresolved problems about the role of polyploidy. Although unsatisfactory, the current conclusion has to be that despite significant progress, there still isn''t enough information to unequivocally answer many unresolved questions about cause and effect of polyploidy on evolutionary success of a species. There is, however, reason to believe that the increasingly integrative approaches discussed here should allow us in the future to make more direct connections between the effects of polyploidy on the genome and the responses this condition elicits from the organism living in its natural environment.  相似文献   

7.
Toward a neutral evolutionary model of gene expression   总被引:4,自引:2,他引:2       下载免费PDF全文
Khaitovich P  Pääbo S  Weiss G 《Genetics》2005,170(2):929-939
  相似文献   

8.
Polyploidy is a major evolutionary process in eukaryotes-particularly in plants and, to a less extent, in animals, wherein several past and recent whole-genome duplication events have been described. Surprisingly, the incidence of polyploidy in other eukaryote kingdoms, particularly within fungi, remained largely disregarded by the scientific community working on the evolutionary consequences of polyploidy. Recent studies have significantly increased our knowledge of the occurrence and evolutionary significance of fungal polyploidy. The ecological, structural and functional consequences of polyploidy in fungi are reviewed here and compared with the knowledge acquired with conventional plant and animal models. In particular, the genus Saccharomyces emerges as a relevant model for polyploid studies, in addition to plant and animal models.  相似文献   

9.
The genome copy numbers of seven crenarchaeal species of four genera have been reported. All of them are monoploid and thus this seems to be a characteristic feature of Crenarchaeota. In stark contrast, none of six species representing six euryarchaeal genera is monoploid. Therefore Euryarchaea are typically oligoploid or polyploidy and their genome copy numbers are tightly regulated in response to growth phase and/or growth rate. A theoretical consideration called 'Muller's ratchet' predicts that asexually reproducing polyploid species should not be able to exist. An escape from Muller's ratchet would be a mechanism leading to the equalization of genome copies, such as gene conversion. Using two species of methanogenic and halophilic archaea, it was shown that heterozygous cells containing different genomes simultaneously can be selected, exemplifying gene redundancy as one possible evolutionary advantage of polyploidy. In both cases, the genomes were rapidly equalized in the absence of selection, showing that gene conversion operates at least in halophilic and methanogenic Euryarchaea.  相似文献   

10.
The advantages and disadvantages of being polyploid   总被引:7,自引:0,他引:7  
Polyploids - organisms that have multiple sets of chromosomes - are common in certain plant and animal taxa, and can be surprisingly stable. The evidence that has emerged from genome analyses also indicates that many other eukaryotic genomes have a polyploid ancestry, suggesting that both humans and most other eukaryotes have either benefited from or endured polyploidy. Studies of polyploids soon after their formation have revealed genetic and epigenetic interactions between redundant genes. These interactions can be related to the phenotypes and evolutionary fates of polyploids. Here, I consider the advantages and challenges of polyploidy, and its evolutionary potential.  相似文献   

11.
The role of polyploidy in the origin of evolutionary novelty and the maintenance of diversity in plant populations has come to be recognized as an integral component of the ecological and evolutionary dynamics of plant species populations. Recent attempts to examine the evolutionary significance of polyploidy have focused on the processes responsible for the origin of polyploid plants and the conditions that favour their establishment and persistence. The importance of these issues is not simply limited to the evolutionary dynamics of polyploidy but is, in fact, central to our understanding of the population biology processes that act on the establishment of new 'types' and the maintenance of biotic diversity at both the inter- and intraspecific levels.  相似文献   

12.
The prevalence of polyploidy among flowering plants is surprising given the hurdles impeding the establishment and persistence of novel polyploid lineages. In the absence of strong assortative mating, reproductive assurance, or large intrinsic fitness advantages, new polyploid lineages face almost certain extinction through minority cytotype exclusion. Consequently, much work has focused on a search for adaptive advantages associated with polyploidy such as increased competitive ability, enhanced ecological tolerances, and increased resistance to pathogens. Yet, no consistent adaptive advantages of polyploidy have been identified. Here, to investigate the potential for autopolyploid establishment and persistence in the absence of any intrinsic fitness advantages, we develop a simulation model of a diploid population that sporadically gives rise to novel autopolyploids. The autopolyploids have only very small levels of initial assortative mating or niche differentiation, generated entirely by dosage effects of genome duplication, and they have realistic levels of reproductive assurance. Our results show that by allowing assortative mating and competitive interactions to evolve, establishment of novel autopolyploid lineages becomes common. Additional scenarios where adaptive optima change over time reveal that rapid environmental change promotes the replacement of diploid lineages by their autopolyploid descendants. These results help to explain recent empirical findings that suggest that many contemporary polyploid lineages arose during the Cretaceous-Tertiary extinction, without invoking adaptive advantages of polyploidy.  相似文献   

13.
为探讨蝽科精巢细胞减数分裂各时期染色体形态和行为差异, 以及据此反映的属种间亲缘关系, 采用常规染色体制片法对蝽科6属9种精巢细胞减数分裂各期染色体形态特征、 行为及精子的形成进行了观察和比较研究。结果表明: 蝽科精巢细胞为交叉型减数分裂, “O”型交叉为其典型交叉减数分裂形式。各属种减数分裂各期染色体行为相似, 但形态不同。减数分裂各期染色体形态、 排列方式, 中期染色体相对长度、 组成与核型以及精子形态等特征具有属种间差异性。蝽科精巢细胞中期Ⅰ染色体组平均相对长度都为12.5, 在进化过程中染色体组长度信息总量不变。基于染色体相对长度的聚类分析结果显示, 菜蝽属Eurydema、 麦蝽属Aelia、 珠蝽属Rubiconia和条蝽属Graphosoma亲缘关系密切, 而二星蝽属Stollia与果蝽属Carpocoris关系较近。  相似文献   

14.
Cope's rule is the tendency for body size to increase over time along a lineage. A set of 65 phylogenetically independent comparisons, between earlier and later genera, show that Cope's rule applied in dinosaurs: later genera were on average about 25% longer than the related earlier genera to which they were compared. The tendency for size to increase was not restricted to a particular clade within the group, nor to a particular time within its history. Small lineages were more likely to increase in size, and large lineages more likely to decrease: this pattern may indicate an intermediate optimum body size, but can also be explained as an artefact of data error. The rate of size increase estimated from the phylogenetic comparisons is significantly higher than the rate seen across the fauna as a whole. This difference could indicate that within-lineage selection for larger size was opposed by clade selection favouring smaller size, but data limitations mean that alternative explanations (which we discuss) cannot be excluded. We discuss ways of unlocking the full potential usefulness of phylogenies for studying the dynamics of evolutionary trends.  相似文献   

15.
While polyploidy (whole-genome multiplication) is generally considered rare in extant gymnosperms (with the exception of Ephedra, Ephedraceae), the occurrence of sporadic polyploid individuals belonging to various genera in the conifer family Cupressaceae has been reported in the literature. In addition, recent studies have revealed that polyploidy is not uncommon in the genus Juniperus (Cupressaceae), with tetraploid and hexaploid individuals reported in individuals collected from wild populations. Given these findings, we undertook a comprehensive screening of ploidy levels in 32 species belonging to the four genera that are phylogenetically closest to Juniperus (i.e.,Callitropsis, Hesperocyparis, Xanthocyparis, and Cupressus), referred to as the CaHXCu complex. In addition, we also determined the ploidy level of two accessions in the poorly studied tetraploid, Fitzroya cupressoides. Using flow cytometry together with published chromosome counts to assign ploidy levels, we show that all species of the CaHXCu complex are diploid except Xanthocyparis vietnamensis, which is tetraploid, with a genome size of 44.60 pg/2 C. This study opens up new opportunities for studying the impact and consequences of polyploidy on the evolution and adaptation of species in Cupressaceae.  相似文献   

16.
The relationship between polyploidy and breeding system is of critical importance for understanding evolution and improving the taxonomy of large Rosaceous genera. Reviewing the data available for the family and for tribe Pyreae (formerly subfamily Maloideae) in particular, it appears that hybridization, pseudogamous gametophytic apomixis, polyploidy, and self-compatibility are closely linked. Studies of the evolutionary significance of any one or two of these factors need to consider the others as well. Taxonomic decisions likewise need to be informed by knowledge of how these factors affect patterns of phenetic and genetic variation.  相似文献   

17.
Photosynthetic rates, chlorophyll content, and activities of several photosynthetic enzymes were determined per cell, per unit DNA, and per unit leaf area in five ploidal levels of the C4 dicot Atriplex confertifolia. Volumes of bundle sheath and mesophyll protoplasts were measured in enzymatic digestions of leaf tissue. Photosynthetic rates per cell, contents of DNA per cell, and activities of the bundle sheath enzymes ribulose 1,5-bisphosphate carboxylase (RuBPC) and NAD-malic enzyme per cell were correlated with ploidal level at 99% or 95% confidence levels, and the results suggested a near proportional relationship between gene dosage and gene products. There was also a high correlation between volume of mesophyll and bundle sheath cells and the ploidal level. Contents of DNA per cell, activity of RuBPC per cell, and volumes of cells were correlated with photosynthetic rate per cell at the 95% confidence level. The mesophyll cells did not respond to changes in ploidy like the bundle sheath cells. In the mesophyll cells the chlorophyll content per cell was constant at different ploidal levels, there was less increase in cell volume than in bundle sheath cells with an increase in ploidy, and there was not a significant correlation (at 95% level) of phosphoenolpyruvate carboxylase activity or content and pyruvate,Pi dikinase activity with increase in ploidy. The number of photosynthetic cells per unit leaf area progressively decreased with increasing ploidy from diploid to hexaploid, but thereafter remained constant in octaploid and decaploid plants. Numbers of cells per leaf area were not correlated with cell volumes. The mean photosynthetic rates per unit leaf area were lowest in the diploid, similar in 4×, 6×, and 8×, and highest in the decaploid. The photosynthetic rate per leaf area was highly correlated with the DNA content per leaf area.  相似文献   

18.
Thirty years after Susumu Ohno proposed that vertebrate genomes are degenerate polyploids, the extent to which genome duplication contributed to the evolution of the vertebrate genome, if at all, is still uncertain. Sequence-level studies on model organisms whose genomes show clearer evidence of ancient polyploidy are invaluable because they indicate what the evolutionary products of genome duplication can look like. The greatest mystery is the molecular basis of diploidization, the evolutionary process by which a polyploid genome turns into a diploid one.  相似文献   

19.
Polyploidy is a major process in plant evolution. Surprisingly, no study has examined its role in species diversification and ecological distribution in relation to other life history traits. In this study, we examine to what extent polyploidy and the other traditionally examined biological traits (pollination mode, dispersal mode and growth form) account for ecological and taxonomic diversity in the flora of the Pyrenees. Fifty genera (in 22 angiosperm families) were classified according to ploidy level, growth form, pollination mode and dispersal mode, and 451 species and/or subspecies in these 50 genera were classified according to ploidy level and growth form. We examined the contribution of ploidy level, pollination and dispersal modes and growth form to (i) the ecological range of species and genera, i.e., the number of natural habitats (defined by a combination of ecological characteristics) where they occur, and (ii) the taxonomic diversity of the 50 genera. Ploidy level and dispersal mode had significant effects on the taxonomic diversity of the 50 genera. Taxonomic diversity, but not polyploidy per se, was significantly correlated with ecological range of genera. For individual species, diploids had a larger ecological range than polyploids, and herbaceous growth forms had wider ecological distributions than other growth forms. Our results indicate that polyploidisation may be a source of ecological diversification of genera, not by increasing the ecological range of particular polyploid species compared to diploids, but rather by creating taxonomic diversity that leads in some genera to a diversification of the habitats occupied by different ploidy levels. This observation is consistent with previous observations of ecological divergence of chromosomal races in some species in the Alps and in the Pyrenees. As found in other studies, species diversification in the studied flora appears to be greatly influenced by the occurrence of multiple dispersal modes, while ecological range of species or subspecies is significantly increased by the presence of herbaceous species.  相似文献   

20.
The more the better? The role of polyploidy in facilitating plant invasions   总被引:1,自引:0,他引:1  

Background

Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant''s genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive.

Scope

We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success.

Conclusions

Polyploidy can be an important factor in species invasion success through a combination of (1) ‘pre-adaptation’, whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the ‘evolution of invasiveness’. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号