首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell surface and intracellular functions for ricin galactose binding.   总被引:4,自引:0,他引:4  
The role of the two galactose binding sites of ricin B chain in ricin toxicity was evaluated by studying a series of ricin point mutants. Wild-type (WT) ricin and three ricin B chain point mutants having mutations in either 1) the first galactose binding domain (site 1 mutant, Met in place of Lys-40 and Gly in place of Asn-46), 2) the second galactose binding domain (site 2 mutant, Gly in place of Asn-255), or 3) both galactose binding domains (double site mutant containing all three amino acid replacements formerly stated) were expressed in Xenopus oocytes and then reassociated with recombinant ricin A chain. The different ricin B chains were mannosylated to the same extent. Cytotoxicity of these toxins was evaluated when cell entry was mediated either by galactose-containing receptors or through an alternate receptor, the mannose receptor of macrophages. WT ricin and each of the single domain mutants was able to kill Vero cells following uptake by galactose containing receptors. Lactose blocked the toxicity of each of these ricins. Site 1 and 2 mutants were 20-40 times less potent than WT ricin, and the double site mutant had no detectable cytotoxicity. WT ricin, the site 1 mutant, and the site 2 mutant also inhibited protein synthesis of mannose receptor-containing cells. Ricin can enter these cells through either a cell-surface galactose-containing receptor or through the mannose receptor. By including lactose in the cell medium, galactose-containing receptor-mediated uptake is blocked and cytotoxicity occurs solely via the mannose receptor. WT ricin, site 1, and site 2 mutants were cytotoxic to macrophages in the presence of lactose with the relative potency, WT greater than site 2 mutant greater than site 1 mutant. The double site mutant lacked cytotoxicity either in the absence or presence of lactose. Thus, even for mannose receptor-mediated toxicity of ricin, at least one galactose binding site remains necessary for cytotoxicity and two galactose binding sites further increases potency. These results are consistent with the model that the ricin B chain galactose binding activity plays a role not only in cell surface binding but also intracellularly for ricin cytotoxicity.  相似文献   

2.
Summary An immunotoxin consisting of ricin A chain linked to the monoclonal antibody M-T151, recognising the CD4 antigen, was weakly toxic to the human T-lymphoblastoid cell line CEM in tissue culture. The incorporation of [3H]leucine by CEM cells was inhibited by 50% at an M-T151-ricin-A-chain concentration (IC50) of 4.6 nM compared with an IC50 of 1.0 pM for ricin. In contrast, immunotoxins made by linking intact ricin to M-T151 in such a way that the galactose-binding sites of the B chain subunit were either blocked sterically by the antibody component or were left unblocked, were both powerfully cytotoxic with IC50 values of 20–30 pM. The addition of ricin B chain to CEM cells treated with M-T151—ricin-A-chain enhanced cytotoxicity by only eight-fold indicating that isolated B chain potentiated the action of the A chain less effectively than it did as an integral component of an intact ricin immunotoxin. Ricin B chain linked to goat anti-(mouse immunoglobulin) also potentiated weakly.Lactose completely inhibited the ability of isolated ricin B chain to potentiate the cytotoxicity of M-T151—ricin-A-chain and partially (3- to 4-fold) inhibited the cytotoxicity of the blocked and non-blocked ricin immunotoxins. Thus, in this system, the galactose-binding sites of the B chain contributed to cell killing regardless of whether isolated B chain was associated with the A chain immunotoxin or was present in blocked or non-blocked form as part of an intact ricin immunotoxin. The findings suggest that the blocked ricin immunotoxin may become unblocked after binding to the target antigen to re-expose the cryptic galactose-binding sites. However, the unblocking cannot be complete because the maximal inhibition of [3H]leucine incorporation by the blocked immunotoxin was only 80% compared with greater than 99% inhibition by the non-blocked immunotoxin.  相似文献   

3.
4.
To probe the role of the Asp-99 ... His-48 pair in phospholipase A2 (PLA2) catalysis, the X-ray structure and kinetic characterization of the mutant Asp-99-->Asn-99 (D99N) of bovine pancreatic PLA2 was undertaken. Crystals of D99N belong to the trigonal space group P3(1)21 and were isomorphous to the wild type (WT) (Noel JP et al., 1991, Biochemistry 30:11801-11811). The 1.9-A X-ray structure of the mutant showed that the carbonyl group of Asn-99 side chain is hydrogen bonded to His-48 in the same way as that of Asp-99 in the WT, thus retaining the tautomeric form of His-48 and the function of the enzyme. The NH2 group of Asn-99 points away from His-48. In contrast, in the D102N mutant of the protease enzyme trypsin, the NH2 group of Asn-102 is hydrogen bonded to His-57 resulting in the inactive tautomeric form and hence the loss of enzymatic activity. Although the geometry of the catalytic triad in the PLA2 mutant remains the same as in the WT, we were surprised that the conserved structural water, linking the catalytic site with the ammonium group of Ala-1 of the interfacial site, was ejected by the proximity of the NH2 group of Asn-99. The NH2 group now forms a direct hydrogen bond with the carbonyl group of Ala-1.  相似文献   

5.
The type XIII xylan-binding domain (XBD) of a family F/10 xylanase (FXYN) from Streptomyces olivaceoviridis E-86 was found to be structurally similar to the ricin B chain which recognizes the non-reducing end of galactose and specifically binds to galactose containing sugars. The crystal structure of XBD [Fujimoto, Z. et al. (2000) J. Mol. Biol. 300, 575-585] indicated that the whole structure of XBD is very similar to the ricin B chain and the amino acids which form the galactose-binding sites are highly conserved between the XBD and the ricin B chain. However, our investigation of the binding abilities of wt FXYN and its truncated mutants towards xylan demonstrated that the XBD bound xylose-based polysaccharides. Moreover, it was found that the sugar-binding unit of the XBD was a trimer, which was demonstrated in a releasing assay using sugar ranging in size from xylose to xyloheptaose. These results indicated that the binding specificity of the XBD was different from those of the same family lectins such as the ricin B chain. Somewhat surprisingly, it was found that lactose could release the XBD from insoluble xylan to a level half of that observed for xylobiose, indicating that the XBD also possessed the same galactose recognition site as the ricin B chain. It appears that the sugar-binding pocket of the XBD has evolved from the ancient ricin super family lectins to bind additional sugar targets, resulting in the differences observed in the sugar-binding specificities between the lectin group (containing the ricin B chain) and the enzyme group.  相似文献   

6.
We have used site-directed mutagenesis to replace histidine 163 of the recA polypeptide with an alanine residue. The new [Ala-163]recA protein catalyzes single-stranded (ss) DNA-dependent ATP hydrolysis with a turnover number that is similar to that of the wild-type recA protein. Despite being proficient in ssDNA-dependent ATP hydrolysis, the [Ala-163]recA protein is unable to promote the ATP-dependent three-strand exchange reaction under standard reaction conditions, pH 7.5. The [Ala-163]recA protein does exhibit three-strand exchange activity at pH 6.0-7.0, however, and the induction of strand exchange activity at low pH correlates directly with the activation of an ATP-dependent isomerization of the mutant protein. Thus, the [Ala-163]recA protein is functionally similar to our previously described mutant [Asn-160]recA protein (Bryant, F.R. (1988) J. Biol. Chem. 263, 8716-8723; Muench, K.A., and Bryant, F. R. (1990) J. Biol. Chem. 265, 11560-11566). Trypsin proteolysis studies indicate that the [Ala-163]recA and [Asn-160]recA proteins, like the wild-type recA protein, are organized into carboxyl-terminal and amino-terminal domains of nearly equal size. According to this structural model, the [Ala-163]recA and [Asn-160]recA mutations may lie in a linker region joining these two domains. We speculate that the [Ala-163]recA and [Asn-160]recA mutations interfere with an ATP-dependent conformational change of the recA protein that perhaps involves a change in the relative orientation of the carboxyl-terminal and amino-terminal domains.  相似文献   

7.
A monoclonal antibody raised against purified ricin B chain, 75/3B12, blocked ricin toxicity 30- to 100-fold in vitro. The 75/3B12 IgG and F(ab')2 blocked ricin binding to cell surface galactose-containing receptors. The 75/3B12 Fab bound ricin D with a Ka of 10(7) M-1, and this binding was blocked by asialofetuin, lactose, and N-acetylgalactosamine--molecules which interact with the ricin galactose-binding site--but not by fetuin, sucrose, or glucose. The 75/3B12 Fab contained no detectable carbohydrate and, according to several lines of evidence, did not bind ricin via Ig carbohydrate determinants. The monoclonal antibody appears to recognize a galactose-binding site on ricin D via the variable region of the antibody. The 75/3B12 Fab bound ricin E only 1/50 as well as ricin D and bound the Ricinus agglutinin only 1/80 as well as ricin D. The antibody specificity indicates that structural differences exist in the galactose-binding sites of the Ricinus communis lectins. Abrin and other lectins which bind galactose or N-acetylgalactosamine were not significantly bound by the monoclonal antibody. In vitro, the antibody blocked the nontarget toxicity of immunotoxins similarly to lactose. However, in vivo, unlike lactose, the 75/3B12 antibody protected mice from ricin toxicity.  相似文献   

8.
Ricin B chain incubated at 37 degrees C in the absence of lactose loses its ability to bind the galactose-containing protein, asialofetuin. Circular dichroism analysis of the B chain during thermal denaturation indicates that the loss of galactose-binding ability by the B chain correlates with limited unfolding of the molecule. As a result of this conformational change, disulfide bonds that are shielded from the solvent by the compact folded structure of the B chain become exposed and the chitobiosyl cores of both N-linked oligomannose chains become susceptible to cleavage by endoglycosidases. The heat-denatured B chain does not enhance the toxicity of a ricin A chain-containing rabbit anti-human immunoglobulin (RAHIg-A) to Daudi cells. However, when heat-denatured B chain is coupled to goat anti-rabbit immunoglobulin (GARIg), the resulting immunotoxin, GARIg-hdB, potentiates the killing of RAHIg-A-treated Daudi cells to an extent similar to that of an immunotoxin prepared with GARIg and native B chain. These results indicate that the native, galactose-binding structure of the B chain is not necessary to enhance the cytotoxicity of the cell-reactive A chain immunotoxin (IT-A) and suggests that regions of the B chain exposed by unfolding the molecule may mediate potentiation of cytotoxicity.  相似文献   

9.
Aminopeptidase A (EC 3.4.11.7, APA) is a 160 kDa membrane-bound zinc enzyme that contains the HEXXH consensus sequence found in members of the zinc metalloprotease family, the zincins. In addition, the monozinc aminopeptidases are characterized by another conserved motif, GXMEN, the glutamate residue of which has been shown to be implicated in the exopeptidase specificity of aminopeptidase A [Vazeux G. (1998) Biochem. J. 334, 407-413]. In carboxypeptidase A (EC 3.4.17.1, CPA), the exopeptidase specificity is conferred by an arginine residue (Arg-145) and an asparagine residue (Asn-144). Thus, we hypothesized that Asn-353 of the GXMEN motif in APA plays a similar role to Asn-144 in CPA and contributes to the exopeptidase specificity of APA. We investigated the functional role of Asn-353 in APA by substituting this residue with a glutamine (Gln-353), an alanine (Ala-353) or an aspartate (Asp-353) residue by site-directed mutagenesis. Expression of wild-type and mutated APAs revealed that Gln-353 and Ala-353 are similarly routed and glycosylated to the wild-type APA, whereas Asp-353 is trapped intracellularly and partially glycosylated. Kinetic studies, using alpha-L-glutamyl-beta-naphthylamide (GluNA) as a substrate showed that the K(m) values of the mutants Gln-353 and Ala-353 were increased 11- and 8-fold, respectively, whereas the k(cat) values were decreased (2-fold) resulting in a 24- and 14-fold reduction in cleavage efficiency. When alpha-L-aspartyl-beta-naphthylamide or angiotensin II were used as substrates, the mutations had a greater effect on k(cat), leading to a similar decrease in cleavage efficiencies as that observed with GluNA. We then measured the inhibitory potencies of several classes of inhibitors, glutamate thiol, glutamine thiol and two isomers (L- or D-) of glutamate phosphonate to explore the functional role of Asn-353. The data indicate that Asn-353 is critical for the integrity and catalytic activity of APA. This residue is involved in substrate binding via interactions with the free N-terminal part and with the P1 carboxylate side chain of the substrate. In conclusion, Asn-353 of the GXMEN motif, together with Glu-352, contributes to the exopeptidase specificity of APA and plays an equivalent role to Asn-144 in CPA.  相似文献   

10.
Ricin is synthesised as an ER-targeted precursor containing an enzymatic A chain and a galactose-binding B chain separated by a 12-amino acid linker propeptide. This internal propeptide is known to contain a sequence-specific vacuolar sorting signal whose functionality depends on the presence of an isoleucine residue. Conversion of this isoleucine to glycine completely abolished vacuolar targeting of proricin and led to its secretion. However, when this mutated signal was positioned at the C-terminus of a normally secreted reporter, vacuolar targeting of a significant fraction still occurred. Likewise, when the corrupted linker was C-terminally exposed within its natural context following the mature ricin A chain, and then co-expressed with ricin B chain, toxin heterodimers were still partially transported to tobacco cell vacuoles. By contrast, when placed at the N-terminus of the secreted reporter, or at the N-terminus of ricin B chain for co-expression with ricin A chain, the propeptide behaved most strikingly as a sequence-specific vacuolar targeting signal that, when mutated, resulted in complete secretion of the proteins. It would appear that the position of the linker peptide influences the specificity of its vacuolar targeting function.  相似文献   

11.
Nucleotide sequence of cloned cDNA coding for preproricin   总被引:20,自引:0,他引:20  
The primary structure of a precursor protein that contains the toxic (A) and galactose-binding (B) chains of the castor bean lectin, ricin, has been deduced from the nucleotide sequence of cloned DNA complementary to preproricin mRNA. A cDNA library was constructed using maturing castor bean endosperm poly(A)-rich RNA enriched for lectin precursor mRNA by size fractionation. Clones containing lectin mRNA sequences were isolated by hybridization using as a probe a mixture of synthetic oligonucleotides representing all possible sequences for a peptide of the ricin B chain. The entire coding sequence of preproricin was deduced from two overlapping cDNA clones having inserts of 1614 and 1049 base pairs. The coding region (1695 base pairs) consists of a 24-amino-acid N-terminal signal sequence (molecular mass 2836 Da) preceding the A chain 267 amino acids, molecular mass 29 399 Da), which is joined to the B chain (262 amino acids, molecular mass 28 517) by a 12-amino-acid linking region (molecular mass 1385 Da).  相似文献   

12.
Recently we have developed blocked ricin, a derivative of native ricin in which the galactose-binding sites of the B-chain are blocked by covalent modification with affinity ligands. This modification impedes the binding function of the B-chain, while sparing its ability to facilitate the entry of the toxic subunit of ricin, the A-chain, into the cytoplasm. Immunotoxins prepared with blocked ricin approach the cytotoxic potency of native ricin with antibody-dependent specificity. Here we report that the high cytotoxic potency of these immunoconjugates, which is attributed to the preserved translocation function of the ricin B-chain, is dependent on the minimal residual lectin activity of blocked ricin. Our findings support the notion that two functions of ricin, membrane binding and translocation, cannot be separated.  相似文献   

13.
A glycopeptide containing a triantennary N-linked oligosaccharide from fetuin was modified by a series of chemical and enzymic reactions to afford a reagent that contained a terminal residue of 6-(N-methylamino)-6-deoxy-D-galactose on one branch of the triantennary structure and terminal galactose residues on the other two branches. Binding assays and gel filtration experiments showed that this modified glycopeptide could bind to the sugar-binding sites of ricin. The ligand was activated at the 6-(N-methylamino)-6-deoxy-D-galactose residue by reaction with cyanuric chloride. The resulting dichlorotriazine derivative of the ligand reacts with ricin, forming a stable covalent linkage. The reaction was confined to the B-chain and was inhibited by lactose. Bovine serum albumin and ovalbumin were not modified by the activated ligand under similar conditions, and we conclude, therefore, that the reaction of the ligand with ricin B-chain was dependent upon specific binding to sugar-binding sites. Ricin that had its galactose-binding sites blocked by the covalent reaction with the activated ligand was purified by affinity chromatography. The major species in this fraction was found to contain 2 covalently linked ligands per ricin B-chain, while a minor species contained 3 ligands per B-chain. The cytotoxicity of blocked ricin was at least 1000-fold less than that of native ricin for cultured cells in vitro, even though the activity of the A-chain in a cell-free system was equal to that from native ricin. Modified ricin that contained only 1 covalently linked ligand was also purified. This fraction retained an ability to bind to galactose affinity columns, although with a lower affinity than ricin, and was only 5- to 20-fold less cytotoxic than native ricin.  相似文献   

14.
Blocked ricin is a glycoconjugate formed by covalent modificationof each of the two galactose-binding sites of ricin with affinityligands derived by modification of glycopeptides containinggalactose-terminated, triantennary, N-linked oligosaccharides.Blocked ricin undergoes a pH-dependent reversible self-association,being predominantly dimeric at neutral pH and monomeric at acidicpH. The shift in the monomer-dimer equilibrium towards the monomericform at acidic pH (pH 4) is inhibited by lactose, as shown bysize-exclusion chromatography. This behavior of blocked ricincan be reproduced in studies with isolated blocked B-chain.The effect, which is dependent on the concentration of the sugar,is specific for sugars having terminal galactose moieties, orsugars having the same orientation of hydroxyl groups at C2and C4 as galactose. These results are interpreted as providingfurther support for the notion that ricin B-chain has a thirdgalactosebinding site, which may be important for the intracellulartrafficking of ricin during intoxication of cells. blocked ricin galactose-binding lectin ricin  相似文献   

15.
Rarobacter faecitabidus protease I (RPI) is a serine protease exhibiting lytic activity toward living yeast cells. RPI is similar to elastase in its substrate specificity and has a lectin-like affinity for mannose. The gene encoding RPI was cloned to elucidate its structure and function. And its nucleotide sequence revealed that it contains an open reading frame encoding a 525-amino acid protein. Homology comparison indicated that pre-pro-RPI consists of three domains: (1) an NH2-terminal prepro domain not found in the mature form of RPI, (2) a protease domain homologous to the trypsin family of serine proteases, and (3) a COOH-terminal domain homologous to the COOH-terminal part of Oerskovia xanthineolytica beta-1,3-glucanase and the NH2-terminal part of the ricin B chain, a lectin isolated from the part of the ricin B chain, a lectin isolated from the castor bean. The RPI gene and its mutant were subsequently expressed in Escherichia coli under its beta-galactosidase promoter to investigate the function of the COOH-terminal domain. The mutant RPI, whose COOH-terminal domain was truncated by site-directed mutagenesis, lost both its mannose-binding and yeast-lytic activity, although the protease activity was not affected. These findings suggest that the COOH-terminal domain actually participates in the mannose-binding activity and is required for yeast-lytic activity.  相似文献   

16.
Ebulin l is a type-II ribosome-inactivating protein (RIP) isolated from the leaves of Sambucus ebulus L. As with other type-II RIP, ebulin is a disulfide-linked heterodimer composed of a toxic A chain and a galactoside-specific lectin B chain. A normal level of ribosome-inactivating N-glycosidase activity, characteristic of the A chain of type-II RIP, has been demonstrated for ebulin l. However, ebulin is considered a nontoxic type-II RIP due to a reduced cytotoxicity on whole cells and animals as compared with other toxic type-II RIP like ricin. The molecular cloning, amino acid sequence, and the crystal structure of ebulin l are presented and compared with ricin. Ebulin l is shown to bind an A-chain substrate analogue, pteroic acid, in the same manner as ricin. The galactoside-binding ability of ebulin l is demonstrated crystallographically with a complex of the B chain with galactose and with lactose. The negligible cytotoxicity of ebulin l is apparently due to a reduced affinity for galactosides. An altered mode of galactoside binding in the 2gamma subdomain of the lectin B chain primarily causes the reduced affinity.  相似文献   

17.
A novel lectin-resistance phenotype was displayed by a LEC10 Chinese hamster ovary (CHO) cell mutant that was selected for resistance to the erythroagglutinin, E-PHA. Biochemical and genetic analyses revealed that the phenotype results from the expression of two glycosylation mutations, LEC10 and lec8. The LEC10 mutation causes the appearance of N-acetylglucosaminyltransferase III (GlcNAc-TIII) activity and the production of N-linked carbohydrates with a bisecting GlcNAc residue. The lec8 mutation inhibits translocation of UDP-Gal into the Golgi lumen and thereby dramatically reduces galactosylation of all glycoconjugates. This reduction in galactose addition does not, however, cause Lec8 mutants to be very resistant to the galactose-binding lectin, ricin. By contrast, the double mutant LEC10.Lec8 behaved like a LEC10 mutant and was highly resistant to ricin. Based on structural studies of cellular glycopeptides as well as glycopeptides of the G glycoprotein of vesicular stomatitis virus grown in mutant cells, it appears that the ricin resistance of LEC10.Lec8 cells is due to the presence of a small number of Gal residues on branched, N-linked carbohydrates that also carry the bisecting GlcNAc residue. Labelling of N-linked cellular carbohydrates with [3H]galactose was found to occur at a low level for a wide spectrum of cellular glycoproteins in independent Lec8 mutants. Studies of the LEC10.Lec8 mutant have, therefore, led to the identification of a subset of structures that are acceptors for Gal when intra-Golgi UDP-Gal levels are limiting. This mutant also illustrates the potential for regulating cell surface recognition by carbohydrate-binding proteins by altering the expression of a single glycosyltransferase such as GlcNAc-TIII.  相似文献   

18.
Identification of three oligosaccharide binding sites in ricin.   总被引:6,自引:0,他引:6  
The galactoside-binding sites of ricin B chain can be blocked by affinity-directed chemical modification using a reactive ligand derived from asialoglycopeptides containing triantennary N-linked oligosaccharides. The terminal galactosyl residue of one branch of the triantennary oligosaccharide is modified to contain a reactive dichlorotriazine moiety. Two separate galactoside-binding sites have been clearly established in the ricin B chain by X-ray crystallography [Rutenber, E., and Robertus, J. D. (1991) Proteins 10, 260-269], and it is necessary to covalently attach two such reactive ligands to the B chain to block its binding to galactoside affinity matrixes. A method was developed using thiol-specific labeling of the ligand combined with subsequent immunoaffinity chromatography which allowed the isolation of ricin B chain peptides covalently linked to the ligand from proteolytic digests of purified blocked ricin. The sites of covalent attachment of the two ligands in blocked ricin were inferred from sequence analysis to be Lys 62 in domain 1 of the B chain and Tyr 148 in domain 2. A minor species of blocked ricin contains a third covalently attached ligand. From the analysis of peptides derived from blocked ricin enriched in this species, it is inferred that Tyr 67 in domain 1 is the specific site on the ricin B chain where a third reactive ligand becomes covalently linked to the protein. These results are interpreted as providing support for the notion that the ricin B chain has three oligosaccharide binding sites.  相似文献   

19.
By osmotic lysis of pinocytic vesicles we were able to inject ricin or ricin A chain directly into the cytosol of Chinese hamster ovary cells. The lag time of 1 to 2 h before the onset of the inhibition of protein synthesis by ricin in intact cells was reduced to 15 to 30 min by this method. Preincubation of cells with a low concentration of nigericin, which was shown earlier to enhance the cytotoxicity of ricin, had no effect under this condition. Direct transfer of either intact ricin or the ricin A subunit by osmotic lysis of pinocytic vesicles into the cytosol of the ricin-resistant CHO mutant cell line 4-10 rendered the mutant 4-10 cells as sensitive to ricin as the CHO pro wild-type cells. Both the lag time and the rate of inhibition of protein synthesis in the wild-type and mutant cell lines after the introduction of ricin by osmotic lysis of pinocytic vesicles were the same. These results indicate that injection of ricin into the cytosol by osmotic lysis of pinosomes bypasses the internalization defect in the mutant cell line.  相似文献   

20.
The single asparagine 322 mutant of the lactose permease was made by constructing a hybrid plasmid which contained the amino-terminal coding sequence from the wild-type permease gene and the carboxyl-terminal coding sequence from a previously characterized double mutant permease which contained an asparagine residue at position 322. Since histidine at position 322 has been postulated to be critically involved with H+ transport and the active accumulation of sugars, the ability of the Asn-322 mutant to couple H+ and sugar transport was carefully examined. Measurements of proton/lactose stoichiometries gave very similar values for the wild-type (0.78) and the Asn-322 strain (0.82). Moreover, the Asn-322 mutant was able to effectively accumulate lactose against a concentration gradient although the levels of accumulation in the Asn-322 mutant (approximately 5-7-fold) were significantly less than that of the wild-type strain (approximately 30-40-fold). Overall, these results are inconsistent with the notion that an ionizable histidine residue at position 322 is obligatorily required for H+ transport or the active accumulation of galactosides against a concentration gradient. The ability of the Asn-322 mutant to recognize a variety of sugars was compared with wild-type, Val-177, and Val-177/Asn-322 strains. The Asn-322 mutant exhibited an ability to recognize and transport maltose (an alpha-glucoside) which was significantly better than the wild-type strain but not as good as either the single Val-177 mutant or the double Val-177/Asn-322 mutant. Both the Asn-322 and the Val-177/Asn-322 strain showed a relatively poor recognition for alpha-galactosides (i.e. melibiose), beta-galactosides (lactose and thiodigalactoside), and beta-glucosides (cellobiose). In contrast, the single Val-177 strain exhibited a normal recognition for these sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号