首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The N-acetylated form of N-methylhistidine (3-methylhistidine, 3-meH), a non-invasive marker of proteolysis, accounts for 80–90% of total 3-meH excretion (acetylated+non-acetylated 3-meH) in the rat. To determine total 3-meH excretion, samples require acid hydrolysis prior to determination by high-performance liquid chromatography. This study evaluated the stability of 3-meH at various times and temperatures of hydrolysis and determined the optimal conditions for hydrolysis of samples. Increasing temperature (120°C) results in significant degradation of 3-meH with no appreciable change in concentration being noted at 80°C. Hydrolysis at 100°C for 1.5 to 4 h or 80°C for 8 to 12 h is recommended for determining total 3-meH concentrations in rat urine.  相似文献   

2.
Summary Muscle actin filaments labeled with rhodamine-phalloidin were observed to move on the surface coated with a crude extract of pollen tubes ofLilium longiflorum with an average velocity of 1.99±0.55 m/sec. The movement required both Mg2+ and ATP. These results indicate that the extract of pollen tubes contains a myosin-like translocatorAbbreviations ATP adenosine-5-triphosphate - DTT dithiothreitol - EGTA ethyleneglycol-bis-(-aminoethylether)N,N,N,N-tetraacetic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
Distribution of actin and myosin in muscle and non-muscle cells   总被引:2,自引:0,他引:2  
Summary Specific anti-actin and anti-myosin antibodies were shown to react in single and double immunofluorescence sandwich tests with identical sites in non-muscle cells in frozen sections of tissues and in cultured cells. In tissues, both antibodies reacted with liver cell membranes, parts of renal glomeruli, brush borders and peritubular fibrils of renal tubules, brain synaptic junctions, and membranes of lymphoid cells in thymic medulla, lymph nodes and spleen. Both antibodies reacted strongly with long parallel cytoplasmic fibrils in cultured fibroblasts, and with disrupted fibrils in cytochalasin-B treated cells. In neuroblastoma cells both antibodies gave prominent staining of growth cones and microspikes. The observation that the distribution of myosin parallels that of actin in non-muscle cells argues strongly in favour of a functional interaction between the two molecules in the generation of contractile activity in nonmuscle cells.The authors thank Dr. M. Owen, National Institute of Medical Research, Mill Hill, for the gift of rabbit anti-actin antibodyOn sabbatical leave from Monash University, and supported by a Commonwealth Medical FellowshipThe Brompton Hospital, London  相似文献   

4.
An actin filament sliding on myosin molecules in the presence of an extremely low concentration of ATP exhibited a staggered movement. Longitudinally sliding movement of the filament was frequently interrupted by its non-sliding, fluctuating movements both in the longitudinal and transversal directions. Intermittent sliding movements of an actin filament indicate establishment of a coordination of ATP-mediated active sites distributed along the filament.  相似文献   

5.
    
Summary Actin, myosin, and laminin have been localized in retinal vessels of normal rats by fluorescence microscopy. Actin was localized with the fluorescent F-actin binding toxin nitrobenzoxadiazole phallacidin (NBD-Ph). Indirect immunofluorescence was used to localize myosin and laminin. In addition, laminin localization was also performed with the Protein A-horseradish peroxidase (PA-HRP) method. NBD-Ph staining gave strong fluorescence in both retinal capillaries and larger vessels. Anti-myosin fluorescence could also be observed in trypsin digests of the retinal vasculature. Strong fluorescence of PA-HRP reaction product could be detected in the walls of vessels exposed to antilaminin antibody. Actin distribution in vessels of the RCS rat with inherited retinal degeneration (retinal dystrophic RCS rat) was also studied. After exposure to NBD-Ph, all capillaries showed fluorescence. However, it was more intense in many of the capillaries in the outer retina, which also appeared morphologically abnormal. Electron microscopy of retinal capillaries fixed in 2.5% glutaraldehyde containing 8% tannic acid revealed numerous micro filaments in the pericyte cytoplasm amd some in the basal portion of endothelial cells. In pericytes, these microfilaments are in close association with the endothelial side of the cell. Tangential sections through this region indicate that these filaments may be anchored to the membrane at this site.Supported by grants EY04831, Research to Prevent Blindness, Inc. and the Michigan Eye Bank  相似文献   

6.
制备了粘菌肌动蛋白抗血清和鸡骨骼肌肌球蛋白抗血清。用这两种抗血清,经对流免疫电泳,火箭电泳及酶联免疫吸附分析,证明了高等植物洋葱鳞茎中肌球蛋白和肌动蛋白的存在。  相似文献   

7.
Myosin molecules contacting an actin filament in the presence of ATP were found to regulate the filamental fluctuations due to ATP hydrolysis in a communicative manner along the filament. As an evidence of the occurrence of the communication, ATP-activated fluctuating displacements of the filament in the direction perpendicular to its longitudinal axis were identified to propagate at a finite velocity not less than about 0.2 μm/s unidirectionally along the filament.  相似文献   

8.
9.
Calyculin A (CL-A), a toxin isolated from the marine sponge Discodermia calyx, is a strong inhibitor of protein phosphatase 1 (PP1) and 2A (PP2A). Although CL-A is known to induce rapid neurite retraction in developing neurons, the cytoskeletal dynamics of this retraction have remained unclear. Here, we investigated the cytoskeletal dynamics during CL-A-induced neurite retraction in cultured rat hippocampal neurons, using fluorescence microscopy as well as polarized light microscopy, which can visualize the polymerization state of the cytoskeleton in living cells. We observed that MTs were bent while maintaining their polymerization state during the neurite retraction. In addition, we also found that CL-A still induced neurite retraction when MTs were depolymerized by nocodazole or stabilized by paclitaxel. These results imply a mechanism other than depolymerization of MTs for CL-A-induced neurite retraction. Our pharmacological studies showed that blebbistatin and cytochalasin D, an inhibitor of myosin II and a depolymerizer of actin, strongly inhibited CL-A-induced neurite retraction. Based on all these findings, we propose that CL-A generates strong contractile forces by actomyosin to induce rapid neurite retraction independently from MT depolymerization.  相似文献   

10.
    
Authors demonstrate the presence of actin and myosin in pollens from Luffa cylindricaand Zea mays in this report. The molecular weight of the heavy chain of pollen myosinis about 165000 daltons as analyzed by 4–30% SDS gradient polyacrylamide gel electrophoresis. The ATPase activity of pollen myosin is identical with the characteristics of rabbit ske-letal muscle myosin. In 0.5 mol/l KCl, the K+-EDTA activity is the highest and Mg2+ activitythe lowest. The Ca2+ activity is higher than Mg2+ activity and lower than K+-EDTA activity.Pollen actin from Zea mays was prepared by preparative SDS polyacrylamide gel electrophoresis Its molecular weight is 43,000 daltons which is the same as rabbit skeletal muscle actin. The effect of drugs on cytoplasmic streaming of pollen tubes were observed under opticalmicroscope Cytochalasin B (CB), chloropromazine (CPZ) and chlorotetracycline (CTC)inhibit cytoplasmic streaming obviously. But colchicine has no effect on the cytoplasmic streamrog. It is suggested that the motive force of cytoplasmic streaming may be the interaction ofmyosin and actin in the pollen tubes.  相似文献   

11.
Summary Changes in the contractile apparatus of denervated rat soleus muscles were investigated during the course of reinnervation.As observed earlier, in the course of denervation atrophy the ratio of myosin to actin filaments decreases because myosin filaments disappear faster than actin filaments (Jakubiec-Puka et al. 1981 a). After reinnervation the amount of myosin filaments and myosin heavy chains (myosin HC) in the muscle increased during the first few days; the increment of actin content was negligible. The proportion of myosin HC to actin remained lower than normal for about 30 days. The excess of actin filaments frequently observed in the newly-formed myofibrils reflects this disproportion.The results show a lability of myosin and suggest some cytoskeletal role for actin filaments.  相似文献   

12.
  总被引:1,自引:0,他引:1  
A low-molecular-weight protein, isolated from bovine brain, inhibits the actin-stimulated Mg-ATPase activity of myosin from striated muscle. This inhibition is probably related to its ability to cause actin to revert from its polymerized to its depolymerized state and to prevent the polymerization of actin. Its effect on the polymeric state of the actin has been demonstrated by viscosity studies. DNase inhibition assay, and electron microscopy. Heavy meromyosin can overcome the effect of the brain protein and stimulate the polymerization of actin. The inhibition of ATPase activity is in part dependent upon the relative amounts of brain protein, actin, and myosin. The apparent molecular weight of the brain protein is approximately 20,000 daltons. It appears to be a heat-labile glycoprotein containing 5-6% carbohydrate.  相似文献   

13.
The striated muscle thin filament comprises actin, tropomyosin, and troponin. The Tn complex consists of three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT). TnT may serve as a bridge between the Ca2+ sensor (TnC) and the actin filament. In the short helix preceding the IT-arm region, H1(T2), there are known dilated cardiomyopathy-linked mutations (among them R205L). Thus we hypothesized that there is an element in this short helix that plays an important role in regulating the muscle contraction, especially in Ca2+ activation. We mutated Arg-205 and several other amino acid residues within and near the H1(T2) helix. Utilizing an alanine replacement method to compare the effects of the mutations, the biochemical and mechanical impact on the actomyosin interaction was assessed by solution ATPase activity assay, an in vitro motility assay, and Ca2+ binding measurements. Ca2+ activation was markedly impaired by a point mutation of the highly conserved basic residue R205A, residing in the short helix H1(T2) of cTnT, whereas the mutations to nearby residues exhibited little effect on function. Interestingly, rigor activation was unchanged between the wild type and R205A TnT. In addition to the reduction in Ca2+ sensitivity observed in Ca2+ binding to the thin filament, myosin S1-ADP binding to the thin filament was significantly affected by the same mutation, which was also supported by a series of S1 concentration-dependent ATPase assays. These suggest that the R205A mutation alters function through reduction in the nature of cooperative binding of S1.  相似文献   

14.
Skinned muscle fibres from the gracilis muscle of the rabbit were used to record small angle X-ray diffraction spectra under various contractile conditions. The intracellular calcium concentration, expressed as pCa, was varied between 8.0 and 5.74. Equatorial diffraction spectra were fitted by a function consisting of five Gaussian curves and a hyperbola to separate the (1.0), (1.1), (2.0), (2.1) and Z-line diffraction peaks. The hyperbola was used to correct for residual scattering in the preparation. The ratio between the intensities of the (1.1) and (1.0) peaks was defined as the relative transfer of mass between myosin and actin, due to crossbridge formation after activation by calcium. The relation between the ratio and the relative force of the fibre (normalized to the force at pCa 5.74 and sarcomere length 2.0 μm) was linear. At high pCa (from pCa 6.34 to 8.0) no active force was observed, while the ratio still decreased. Sarcomere length was recorded by laser diffraction. The laser diffraction patterns did not show changes in sarcomere length due to activation in the high pCa range (between 8.0 and 6.34). From these results the conclusion is drawn that crossbridge movement occurs even at subthreshold calcium concentrations in the cell, when no active force is exerted. Since no force is generated this movement may be related to crossbridges in the weakly bound state. Received: 20 June 1996 / Revised version: 12 January 1998 / Accepted: 18 March 1998  相似文献   

15.
Summary The ultrastructure of the contractile apparatus of the rat soleus muscle during the course of denervation atrophy was investigated. It was found that the ratio of thin to thick filaments increased in myofibrils of atrophying muscle fibers. Elevation of the ratio was observed as early as the second day after denervation, and became more pronounced with the progress of atrophy. Parallel measurements of the amounts of actin and myosin in the myofibrils and in the muscle protein extracts revealed a lower proportion of myosin heavy chains to actin in the fractions from denervated muscles, compared with the control values. Both the electron-microscopic observations and the biochemical evaluation of the actin content of the muscle, suggests that the elevated ratio of thin to thick filaments seen in the course of the muscle atrophy appears as the result of an earlier and more intensive disappearance of thick filaments. Thin filaments disappeared more slowly, in parallel to the decrease in muscle weight.On the basis of the results presented a mechanism of progress of simple atrophy of muscle in suggested.  相似文献   

16.
Myosin 1b (Myo1b), a class I myosin, is a widely expressed, single-headed, actin-associated molecular motor. Transient kinetic and single-molecule studies indicate that it is kinetically slow and responds to tension. Localization and subcellular fractionation studies indicate that Myo1b associates with the plasma membrane and certain subcellular organelles such as endosomes and lysosomes. Whether Myo1b directly associates with membranes is unknown. We demonstrate here that full-length rat Myo1b binds specifically and with high affinity to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-triphosphate (PIP3), two phosphoinositides that play important roles in cell signaling. Binding is not Ca2+-dependent and does not involve the calmodulin-binding IQ region in the neck domain of Myo1b. Furthermore, the binding site is contained entirely within the C-terminal tail region, which contains a putative pleckstrin homology domain. Single mutations in the putative pleckstrin homology domain abolish binding of the tail domain of Myo1b to PIP2 and PIP3 in vitro. These same mutations alter the distribution of Myc-tagged Myo1b at membrane protrusions in HeLa cells where PIP2 localizes. In addition, we found that motor activity is required for Myo1b localization in filopodia. These results suggest that binding of Myo1b to phosphoinositides plays an important role in vivo by regulating localization to actin-enriched membrane projections.  相似文献   

17.
目前在众多的分子马达中对骨骼肌肌球蛋白的研究较多,本文对肌球蛋白的结构、工作循环机制以及单分子动力学性质进行了探索。同时,对各种生化条件下肌纤维的收缩性质进行了测试。将Houdusse和Sweeney给出的机械化学偶联模型简化成一个新的四态模型,通过对定态时肌球蛋白态分布的研究,证明了简化模型的合理性。  相似文献   

18.
Proper membrane localization of ion channels is essential for the function of neuronal cells. Particularly, the computational ability of dendrites depends on the localization of different ion channels in specific subcompartments. However, the molecular mechanisms that control ion channel localization in distinct dendritic subcompartments are largely unknown. Here, we developed a quantitative live cell imaging method to analyze protein sorting and post-Golgi vesicular trafficking. We focused on two dendritic voltage-gated potassium channels that exhibit distinct localizations: Kv2.1 in proximal dendrites and Kv4.2 in distal dendrites. Our results show that Kv2.1 and Kv4.2 channels are sorted into two distinct populations of vesicles at the Golgi apparatus. The targeting of Kv2.1 and Kv4.2 vesicles occurred by distinct mechanisms as evidenced by their requirement for specific peptide motifs, cytoskeletal elements, and motor proteins. By live cell and super-resolution imaging, we identified a novel trafficking machinery important for the localization of Kv2.1 channels. Particularly, we identified non-muscle myosin II as an important factor in Kv2.1 trafficking. These findings reveal that the sorting of ion channels at the Golgi apparatus and their subsequent trafficking by unique molecular mechanisms are crucial for their specific localizations within dendrites.  相似文献   

19.
The presence of prosome proteins (p25K and p27K) was shown and their distribution was studied in oogenesis of Xenopus laevis using immunoblotting and immunofluorescence. These proteins form numerous granular clusters of variable size all over the cell. At previteilogenic stages, the prosome antibodies homogeneously stain the oocyte nucleus and the evenly distributed relatively large clusters in the cytoplasm. As the oocyte grows, the pattern of distribution of the prosome proteins undergoes changes: animal-vegetal and cortical gradients appear in the cytoplasm. In the course of oocyte maturation the size of clusters diminishes. Artificial activation of the egg leads to a dorso-ventral gradient in distribution of the prosome proteins. In this way, specific localization of prosome proteins is first visualized during formation of the dorso-ventral polarity. Co-localization of prosome proteins and actin and myosin was found in the oocyte by double staining. Small clusters of prosomes dispersed in the cytoplasm acquire capability of movement (after artificial activation) due, in all likelihood, to persisting connection with the acto-myosin complex of the egg. © 1994 Wiley-Liss, Inc.  相似文献   

20.
The G146V mutation in actin is dominant lethal in yeast. G146V actin filaments bind cofilin only minimally, presumably because cofilin binding requires the large and small actin domains to twist with respect to one another around the hinge region containing Gly-146, and the mutation inhibits that twisting motion. A number of studies have suggested that force generation by myosin also requires actin filaments to undergo conformational changes. This prompted us to examine the effects of the G146V mutation on myosin motility. When compared with wild-type actin filaments, G146V filaments showed a 78% slower gliding velocity and a 70% smaller stall force on surfaces coated with skeletal heavy meromyosin. In contrast, the G146V mutation had no effect on either gliding velocity or stall force on myosin V surfaces. Kinetic analyses of actin-myosin binding and ATPase activity indicated that the weaker affinity of actin filaments for myosin heads carrying ADP, as well as reduced actin-activated ATPase activity, are the cause of the diminished motility seen with skeletal myosin. Interestingly, the G146V mutation disrupted cooperative binding of myosin II heads to actin filaments. These data suggest that myosin-induced conformational changes in the actin filaments, presumably around the hinge region, are involved in mediating the motility of skeletal myosin but not myosin V and that the specific structural requirements for the actin subunits, and thus the mechanism of motility, differ among myosin classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号