首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The systemic movement of Cucumber mosaic virus (CMV) in cucumber plants was analyzed. The structure that is translocated and its putative interactions with phloem components were analyzed in phloem exudate (PE) samples, which reflect sieve tubes stream composition. Rate zonal centrifugation and electron-microscopy analyses of PE from CMV-infected plants showed that CMV moves through sieve tubes as virus particles. Gel overlay assays revealed that CMV particles interact with a PE protein, p48. The amino-acid sequence of several tryptic peptides of p48 was determined. Partial amino-acid sequence of p48 showed it was a cucumber homolog of phloem protein 1 (PP1) from pumpkin, with which p48 also shares several chemical properties. PP1 from pumpkin has plasmodesmata-gating ability and translocates in sieve tubes. Encapsidated CMV RNA in PE samples from infected plants was less accessible to digestion by RNase A than RNA in purified CMV particles, a property that was reconstituted by the in vitro interaction of purified CMV particles and protein p48. These results indicate that the interaction with p48 modifies CMV particle structure and suggest that CMV particles interact with the cucumber homolog of PP1 during translocation in the sieve tubes.  相似文献   

2.
Calcium-dependent protein kinases (CDPKs) constitute a unique family of enzymes in plants that are characterized by a C-terminal calmodulin (CaM)-like domain. Through protein kinase assays, we have examined the levels of cucumber calcium-dependent kinase (CsCDPK) activity in various organs of cucumber seedlings and plants. The activity of CsCDPK was highest in cucumber plant leaves followed by seedling roots and hypocotyls; however, cucumber plant flowers, seedling cotyledons, and hooks had levels that were barely detectable. The CsCDPKs were immunolocalized using polyclonal antibodies that are highly specific against a part of the kinase domain of a calcium-dependent protein kinase (CsCDPKS) in the phloem sieve elements (SEs) in various organs of cucumber. In addition, this study indicates the presence of CsCDPKs in organelle-like bodies associated with the plasma membrane of sieve elements in mature stems and roots as well as in the storage bodies of immature seeds. These findings are discussed in terms of the likely roles played by CDPKs in the signal transduction pathways for Ca2+-regulated phloem transport of assimilates from leaves to various organs during growth and development of cucumber seedlings and plants.  相似文献   

3.
In plants, the vascular system, specifically the phloem, functions in delivery of small RNA (sRNA) to exert epigenetic control over developmental and defense‐related processes. Although the importance of systemic sRNA delivery has been established, information is currently lacking concerning the nature of the protein machinery involved in this process. Here, we show that a PHLOEM SMALL‐RNA BINDING PROTEIN 1 (PSRP1) serves as the basis for formation of an sRNA ribonucleoprotein complex (sRNPC) that delivers sRNA (primarily 24 nt) to sink organs. Assembly of this complex is facilitated through PSRP1 phosphorylation by a phloem‐localized protein kinase, PSRPK1. During long‐distance transport, PSRP1–sRNPC is stable against phloem phosphatase activity. Within target tissues, phosphatase activity results in disassembly of PSRP1–sRNPC, a process that is probably required for unloading cargo sRNA into surrounding cells. These findings provide an insight into the mechanism involved in delivery of sRNA associated with systemic gene silencing in plants.  相似文献   

4.
Host-plant and whitefly strain effects and their interactions on the probing and sap feeding of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood), have been investigated in this study using the DC-EPG (Electrical Penetration Graph) technique. Whiteflies generally displayed fewer but longer probes on highly acceptable cucumber than on less acceptable tomato. Both whitefly strains, the T(omato)-strain and the C(ucumber)-strain, showed a significantly lower number of phloem phases on cucumber than on tomato. However, the duration of total phloem phases achieved by either of the whitefly strains on these two host plants was not significantly different. These data indicate that a more continuous phloem feeding has occurred on cucumber plants. Indeed, the percentage of phloem feeding time after the first sustained phloem phase (longer than 15 min) was higher on cucumber for the C-strain whiteflies. When comparing these two whitefly strains, the T-strain whiteflies probed less frequently but longer than the C-strain whiteflies did on both host plants. Also, the T-strain whiteflies displayed a longer duration of total phloem phases on tomato. An interaction between the whitefly strain and plant effects was detected on a parameter, which showed that whiteflies probed significantly longer before reaching the first phloem phase on the host plants that had been previously experienced. In conclusion, both plant species and whitefly strains affect whitefly's probing and feeding behaviour, though plant effects are much stronger.  相似文献   

5.
6.
Proteomics of curcurbit phloem exudate reveals a network of defence proteins   总被引:11,自引:0,他引:11  
  相似文献   

7.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

8.
Phloem proteins (P-proteins) are an enigmatic group of proteins present in most angiosperm species. The best characterized P-proteins (PP1 and PP2) are synthesized in companion cells, transported into sieve elements via pore plasmodesmata and translocated through the plant. Characteristics such as long-distance translocation, RNA-binding activity and capacity of increasing plasmodesmata exclusion size suggest that certain phloem proteins could be involved in RNA transport within the plant, forming translocatable ribonucleoprotein complexes with endogenous or pathogenic RNAs. Long-distance movement of RNA through the phloem is a process known to occur, but both the mechanisms involved and the components constituting this potential information network remain unclear. Here, we demonstrate that several melon phloem proteins have a wide RNA-binding activity. Serological assays strongly suggest that one of these proteins is the melon phloem protein 2 (CmmPP2). Mass spectrometry analysis undoubtedly identifies another one as the recently characterized melon phloem lectin (CmmLec17). Grafting experiments demonstrate that the CmmLec17 is a translocatable phloem protein, able to move through intergeneric grafts from melon to pumpkin. Translocatability and RNA-binding activity was also demonstrated for an uncharacterized protein of approximately 14 kDa. In light of these results the possible involvement of these phloem proteins in the long-distance transport of melon RNAs is discussed.  相似文献   

9.
黄瓜韧皮部的类血影蛋白   总被引:2,自引:0,他引:2  
以黄瓜 (CucumissativusL .)叶柄为实验材料 ,应用胶体金免疫电镜技术证明类血影蛋白存在于韧皮部的筛管_伴胞复合体中 ,广泛分布于筛分子中的韧皮蛋白纤丝以及筛分子网络结构上 ,并且分布在伴胞的细胞质和线粒体膜以及筛分子与伴胞之间的分支状胞间连丝上 ,表明该蛋白可能由伴胞合成并经由二者之间的胞间连丝运输到筛分子中。用免疫印迹技术证明 ,黄瓜韧皮部汁液蛋白中存在类血影蛋白 ,其分子量约为 2 6 0kD ,与动物细胞中血影蛋白的分子量接近  相似文献   

10.
11.
A systemic small RNA signaling system in plants   总被引:23,自引:0,他引:23       下载免费PDF全文
Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes.  相似文献   

12.
13.
Gómez G  Pallás V 《Journal of virology》2004,78(18):10104-10110
Viroids are highly structured plant pathogenic RNAs that do not code for any protein, and thus, their long-distance movement within the plant must be mediated by direct interaction with cellular factors, the nature of which is presently unknown. In addition to this type of RNAs, recent evidence indicates that endogenous RNAs move through the phloem acting as macromolecular signals involved in plant defense and development. The form in which these RNA molecules are transported to distal parts of the plant is unclear. Viroids can be a good model system to try to identify translocatable proteins that could assist the vascular movement of RNA molecules. Here, we demonstrate by use of immunoprecipitation experiments, that the phloem protein 2 from cucumber (CsPP2) is able to interact in vivo with a viroid RNA. Intergeneric graft assays revealed that both the CsPP2 and the Hop stunt viroid RNA were translocated to the scion. The translocated viroid is symptomatic in the nonhost scion, indicating that the translocated RNA is functional. The CsPP2 gene was cloned and sequenced. The analysis of its primary structure revealed the existence of a potential double-spaced-RNA-binding motif, previously identified in a set of proteins that bind to highly structured RNAs, which could explain its RNA-binding properties. The possible involvement of this phloem protein in assisting the long-distance movement of the viroid RNA within the plant is discussed.  相似文献   

14.
Hu L  Sun H  Li R  Zhang L  Wang S  Sui X  Zhang Z 《Plant, cell & environment》2011,34(11):1835-1848
The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed.  相似文献   

15.
Malter D  Wolf S 《Protoplasma》2011,248(1):217-224
In addition to small molecules such as sugars and amino acids, phloem sap contains macromolecules, including mRNA and proteins. It is generally assumed that all molecules in the phloem sap are on the move from source to sink, but recent evidence suggests that the macromolecules' direction of movement can be controlled by endogenous plant mechanisms. To test the hypothesis that the phloem-sap protein profile is affected by local metabolic activities, we analyzed the phloem-sap proteome in young and mature tissues of melon plants. We also examined the effect of cucumber mosaic virus (CMV) infection and expression of CMV movement protein in transgenic melon plants on the phloem protein profile. Sap collected from cut sections of young stems or petioles contained specific proteins that were absent from sap collected from mature stems or petioles. Most of these proteins were involved in defense response and protection from oxidative stress, suggesting that they play a role in maintaining safe activity of the sieve tubes in young tissues. Phloem sap collected from CMV-infected plants and transgenic plants expressing the CMV movement protein contained only a few additional proteins with molecular masses of 18 to 75 kDa. Here again, most of the additional proteins were associated with stress responses. Our study indicated that the proteome of phloem sap is dynamic and under developmental control. Entry and exit of proteins from the sieve tube can be regulated at the tissue level. Moreover, the plant can maintain regulation of protein trafficking from companion cells to sieve elements under viral infection or other perturbations in plasmodesmal function.  相似文献   

16.
Potato virus X coat protein is necessary for both cell-to-cell and phloem transfer, but it has not been clarified definitively whether it is needed in both movement phases solely as a component of the assembled particles or also of differently structured ribonucleoprotein complexes. To clarify this issue, we studied the infection progression of a mutant carrying an N-terminal deletion of the coat protein, which was used to construct chimeric virus particles displaying peptides selectively affecting phloem transfer or cell-to-cell movement. Nicotiana benthamiana plants inoculated with expression vectors encoding the wild-type, mutant and chimeric viral genomes were examined by microscopy techniques. These experiments showed that coat protein-peptide fusions promoting cell-to-cell transfer only were not competent for virion assembly, whereas long-distance movement was possible only for coat proteins compatible with virus particle formation. Moreover, the ability of the assembled PVX to enter and persist into developing xylem elements was revealed here for the first time.  相似文献   

17.
The phloem is the major route for the transport of solutes and nutrients from source to sink organs in plants. The functional transport phloem consists of parenchymal tissue, enucleate sieve elements, and the intimately connected companion cells. The general absence of a nucleus and functional ribosomes in sieve tubes poses problems especially for damage avoidance and repair of sieve element components. To examine how sieve tubes can remain functional during oxidative stress, we analysed phloem sap of cucumber and pumpkin plants with respect to the presence of antioxidant defence enzymes, their enzymatic activity, and activity changes after exposure to drought stress. Using 1D SDS-PAGE and nano ESI MS/MS, the presence of proteins such as cytosolic Cu/Zn superoxide dismutase, monodehydroascorbate reductase, and peroxidase could be shown. Moreover, activities for several antioxidant enzymes (superoxide dismutase, dehydroascorbate reductase, peroxidase) in phloem exudate could be demonstrated. The activity of these enzymes in phloem sap from cucumber and pumpkin plants increased in response to drought stress. The presented results together with earlier findings provide evidence supporting the presence of a complete machinery of antioxidant defence enzymes and detoxifying metabolites important for avoiding damage to essential components of the sieve elements due to oxidative stress.  相似文献   

18.
Possible involvement of the phloem lectin in long-distance viroid movement.   总被引:9,自引:0,他引:9  
Incubation with cucumber phloem exudate in vitro results in a dramatic decrease in the electrophoretic mobility of Hop stunt viroid. UV cross-linking and a combination of size exclusion and ion exchange chromatography indicate that this phenomenon reflects a previously unsuspected ability of phloem protein 2, a dimeric lectin and the most abundant component of phloem exudate, to interact with RNA. In light of its demonstrated ability to move from cell to cell via plasmodesmata as well as long distances in the phloem, our results suggest that phloem protein 2 may facilitate the systemic movement of viroids and, possibly, other RNAs in vivo.  相似文献   

19.
It is generally accepted that viral systemic infection follows the source-to-sink symplastic pathway of sugar translocation. In plants that are classified as apoplastic loaders, the boundary between the companion cell-sieve element (CC-SE) complex and neighboring cells is symplastically restricted, and the potential passage of macromolecules between the two domains has yet to be explored. Transgenic tobacco plants expressing green fluorescence protein (GFP) and cucumber mosaic virus (CMV)-encoded proteins fused to GFP under the control of the fructose-1,6-bisphosphatase (FBPase) promoter were produced in order to localize the encoded proteins in mesophyll and bundle sheath cells and to explore the influence of viral infection on the functioning of plasmodesmata interconnecting the two domains. GFP produced outside the vascular tissue could overcome the symplastic barrier between the CC-SE complex and the surrounding cells to enter the vasculature in CMV-infected plants. Grafting of control (non-transgenic) tobacco scions to CMV-infected FBPase-GFP-expressing root stocks confirmed that GFP could move long distances in the phloem. No movement of the gfp mRNA was noticeable in this set of experiments. The ability of GFP to enter the vasculature and move long distances was also evident upon infection of the grafting plants with other viruses. These results provide experimental evidence for alteration of the functioning of plasmodesmata interconnecting the CC-SE complex and neighboring cells by viral infection to enable non-selective trafficking of macromolecules from the mesophyll into the sieve tube.  相似文献   

20.
The plant vascular system plays a pivotal role in the delivery of nutrients to distantly located organs. Recent discoveries have provided new insight into a novel role for plasmodesmata and the phloem in terms of the transport and delivery of information macromolecules (i.e. proteins and ribonucleoprotein complexes). Non-cell/organ-autonomous control over gene expression may function both in defense signaling and developmental programming in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号