首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lazarov N  Dandov A 《Acta anatomica》1998,163(4):191-200
The trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN) neurons are involved in the transmission of orofacial sensory information. The presence of nitric oxide (NO), a putative neurotransmitter substance in the nervous system, was examined in the cat TrG and MTN using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry. In the TrG, where the majority of the trigeminal primary afferent perikarya are located, most of the intensely NADPH-d/ NOS-stained cells were small in size and distributed randomly throughout the ganglion. The medium-sized neurons were moderately stained. A plexus of pericellular varicose arborizations around large unstained ganglion cells and densely stained fibers in-between could also be observed. In the caudal part of the MTN, both NADPH-d activity and NOS immunoreactivity was present in MTN neurons. In addition, a few scattered NADPH-d/NOS-containing neurons were found in the mesencephalic-pontine junction part of the nucleus. In contrast, only nerve fibers and their terminals were present at a more rostral level in the mid- and rostral MTN. MTN neuronal perikarya were enveloped in fine basket-like NADPH-d/ NOS-positive networks. Differential expression patterns of NOS and its marker NADPH-d suggest that trigeminal sensory information processing in the cat MTN is controlled by nitrergic input through different mechanisms. We introduce the concept that NO can act as a neurotransmitter in mediating nociceptive and proprioceptive information from periodontal mechanoreceptors but may also participate in modulating the activity of jaw-closing muscle afferent MTN neurons.  相似文献   

2.
Summary With the peroxidase-antiperoxidase immunohistochemical method we ascertained the presence of substance P-like immunoreactivity (SPLI) in fibers and cell bodies of the trigeminal sensory system of the pit viper, Agkistrodon blomhoffi. There are a few SPLI fibers each in the principal sensory nucleus and the main neuropil of the lateral descending nucleus (i.e., the infrared sensory nucleus); a moderate number in the descending nucleus; and a large number in the caudal subnucleus, the medial edges of the interpolar subnucleus, and the marginal neuropil of the lateral descending nucleus. About 30% of the cell bodies in the ophthalmic and maxillo-mandibular ganglia show SPLI, and of the two craniocervical ganglia, the proximal ganglion has many more cells with SPLI than the distal ganglion. The SPLI distribution in the common trigeminal sensory system is similar to that of mammals, and suggests that the function of this system is also similar. In the infrared sensory system, the differing distribution in the main and marginal neuropils suggests separate functions for these two structures in the system.  相似文献   

3.
Water shrews (Sorex palustris) depend heavily on their elaborate whiskers to navigate their environment and locate prey. They have small eyes and ears with correspondingly small optic and auditory nerves. Previous investigations have shown that water shrew neocortex is dominated by large representations of the whiskers in primary and secondary somatosensory cortex (S1 and S2). Flattened sections of juvenile cortex processed for cytochrome oxidase revealed clear borders of the whisker pad representation in S1, but no cortical barrels. We were therefore surprised to discover prominent barrelettes in brainstem of juvenile water shrews in the present investigation. These distinctive modules were found in the principal trigeminal nucleus (PrV), and in two of the three spinal trigeminal subnuclei (interpolaris – SpVi and caudalis – SpVc). Analysis of the shrew''s whisker pad revealed the likely relationship between whiskers and barrelettes. Barrelettes persisted in adult water shrew PrV, but barrels were also absent from adult cortex. Thus in contrast to mice and rats, which have obvious barrels in primary somatosensory cortex and less clear barrelettes in the principal nucleus, water shrews have clear barrelettes in the brainstem and no barrels in the neocortex. These results highlight the diverse ways that similar mechanoreceptors can be represented in the central nervous systems of different species.  相似文献   

4.
Primary sensory information from neurons innervating whisker follicles on one side of a rat's face is relayed primarily through two subnuclei of the brainstem trigeminal complex to the contralateral thalamus. The present experiments were undertaken to separate the contribution of the principal trigeminal nucleus (PrV) from that of the spinal trigeminal nucleus (SpV) to whisker evoked responses in the ventral posterior medial (VPM) nucleus in the adult rat thalamus. Extracellular single-unit responses of VPM neurons to controlled stimulation of the contralateral whiskers under urethane anesthesia were quantified in terms of receptive field size, modal latency, response probability and response magnitude. The SpV contribution to VPM cell responses was isolated by making kainic acid lesions of the PrV. The PrV contribution was ascertained by cutting the trigeminothalamic axons arising from SpV just before they cross the midline. After destruction of the PrV, the SpV pathway alone produced large receptive fields (mean: 9.04 whiskers) and long latency (mean: 11.07 ms) responses from VPM neurons. In contrast, PrV input alone (SpV disconnected) generated small receptive fields (mean: 1.06 whiskers) and shorter latency (mean: 6.74 ms) responses. With both pathways intact the average receptive field size was 2.4 whiskers and peak (modal) response latency was 7.33 ms. The responses with both pathways intact were significantly different from either pathway operating in isolation. Response probability and magnitude followed the same trend. We conclude that normal responses of individual VPM neurons represent the integration of input activity transmitted through both PrV and SpV pathways.  相似文献   

5.
H Bravo  O Inzunza 《Acta anatomica》1985,122(2):99-104
The topographic distribution of the neurones that innervate the muscles that advance the nictitating membrane in birds was studied using intra-axonal retrograde transport of horseradish peroxidase. The motor neurones are distributed in the oculomotor complex of the ipsilateral and contralateral sides. In the ipsilateral side, the neurones innervating the pyramidalis muscles were located in the dorsolateral, dorsomedial and ventromedial subnuclei, while those neurones innervating the quadratus muscle were found in the dorsomedial and dorsolateral subnuclei. In the contralateral side the neurones innervating both the pyramidalis and quadratus were distributed in the ventromedial and ventrolateral subnuclei. The sensory neurones were found in the trigeminal ganglion and trigeminal mesencephalic nucleus.  相似文献   

6.
梁运飞 《蛇志》2006,18(2):85-91
许多蛇类,例如响尾蛇属,洞蛇属,饭匙倩蛇属,竹叶青蛇属和蝮蛇属等在头部具有一对能在黑暗中探测和捕获猎物的凹陷器官。这种凹陷器官对红外射线非常敏感,因此也称为红外线感受器官。凹陷器官在中间部位被一层约为15μm厚的薄膜(红外线感受膜)分隔为外腔和内腔,红外线感受膜由三叉神经节中的特化假单极神经细胞(红外线感受细胞)的外周轴突所支配,红外线感受膜内相邻的游离神经末梢聚合形成约40μm直径的团块,构成了基本的红外线感受野单元。三叉神经节中的红外线感受细胞的中枢轴突投射到同侧延髓中的三叉神经束外侧降核,该神经核团为此类蛇属所特有。从三叉神经束外侧降核二级神经元发出的轴突投射到对侧视顶盖。由于蛇类不具有分化的半球新皮质,因此视顶盖为红外线感受系统的感觉与行为的整合中枢。在三叉神经节,延髓三叉神经束外侧降核及视顶盖均可记录到神经细胞对红外线刺激的反应电位,从而可观察红外线刺激强度与各级红外线感受神经元反应强度的关系。本文简述了蛇类红外线感受系统的形态学和生理学特征及其研究进展,并且探讨了利用蛇类红外线感受系统作为生物体接受外气功研究的实验动物模型的可能性。  相似文献   

7.
A fundamental question in the neurosciences is how central nervous system (CNS) space is allocated to different sensory inputs. Yet it is difficult to measure innervation density and corresponding representational areas in the CNS of most species. These measurements can be made in star-nosed moles (Condylura cristata) because the cortical representation of nasal rays is visible in flattened sections and afferents from each ray can be counted. Here we used electrophysiological recordings combined with sections of the brainstem to identify a large, visible star representation in the principal sensory nucleus (PrV). PrV was greatly expanded and bulged out of the brainstem rostrally to partially invade the trigeminal nerve. The star representation was a distinct PrV subnucleus containing 11 modules, each representing one of the nasal rays. The 11 PrV ray representations were reconstructed to obtain volumes and the largest module corresponded to ray 11, the mole's tactile fovea. These measures were compared to fiber counts and primary cortical areas from a previous investigation. PrV ray volumes were closely correlated with the number of afferents from each ray, but afferents from the behaviorally most important, 11(th) ray were preferentially over-represented. This over-representation at the brainstem level was much less than at the cortical level. Our results indicate that PrV provides the first step in magnifying CNS representations of important afferents, but additional magnification occurs at higher levels. The early development of the 11(th), foveal appendage could provide a mechanism for the most important afferents to capture the most CNS space.  相似文献   

8.
Neurological dysfunction after traumatic brain injury (TBI) is associated with pathology in cortical, subcortical, and brainstem nuclei. Our laboratory has reported neuropathology and microglial activation in the somatosensory barrel cortex (S1BF) and ventral posterior medial thalamus (VPM) after diffuse TBI in the rat, which correlated with post-injury whisker sensory sensitivity. The present study extends our previous work by evaluating pathology in whisking-associated sensory and motor brainstem nuclei. Brains from adult, male rats were recovered over 1 month after midline fluid percussion or sham injury. The principal trigeminal nucleus (PrV, sensory nucleus) and facial nucleus (VIIN, motor nucleus) were examined for neuropathology (silver histochemistry) and microglial activation (Iba1). Significant neuropathology in PrV was evident at 2 and 7 days post-injury compared to sham. Iba1-labeled microglia showed swollen somata and thickened processes over 1 month post-injury. In contrast, the VIIN showed non-significant neuropathology and reduced labeling of activated Iba1 microglia over 1 month post-injury. Together with our previous data, neuropathology and neuroinflammation in the whisker somatosensory pathway may contribute to post-injury sensory sensitivity more than the motor pathway. Whether these findings are direct results of the mechanical injury or consequences of progressive degeneration remains to be determined.  相似文献   

9.
Summary Nitric oxide (NO) is a ubiquitous gaseous neurotransmitter that has been ascribed to a large number of physiological roles in sensory neurons. It is produced by the enzyme nitric oxide synthase (NOS). To identify the NOS-containing structures of rat trigeminal primary afferent neurons, located in the trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN), histochemistry to its selective marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) was applied in this study. In the TrG approximately half of the neuronal population was NADPH-d reactive. Strongly positive were neurons mainly of small-to-medium size. Neuronal profiles of large diameter were less intensely stained. In addition, NADPH-d-positive nerve fibers were dispersed throughout the ganglion. Nitrergic neurons were located in the caudal part and mesencephalic-pontine junction of the MTN. Most of them were large-sized pseudounipolar cells. In a more rostral aspect, the reactive psedounipolar MTN profiles gradually decreased in number and intensity of staining. There, only a fine meshwork of stained thin fibers and perisomatic terminal arborizations, and also some isolated perikarya of NADPH-d stained multipolar MTN neurons, were observed. The predominant NADPH-d localization in smaller in size TrG neurons, which are considered nociceptive, suggests that NO may play a role in the pain transmission in the rat trigeminal afferent pathways. In addition, the wide distribution of NADPH-d activity in large pseudounipolar and certain multipolar MTN neurons provides substantial evidence that NO may also participate in mediating proprioceptive information from the orofacial region. The differential expression patterns of nitrergic fibers in the TrG and MTN suggest that trigeminal sensory information processing is controlled by nitrergic input through different mechanisms.  相似文献   

10.
The source of innervation of the corpuscular bodies in the palate and the central projections of the afferent fibres of the entire palate was studied in rats by transganglionic transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and with substance P (SP) immunohistochemistry. WGA-HRP injected into the incisal papilla was taken up by the nerve fibres that terminated in the corpuscles. Retrogradely labelled neurons were observed in the trigeminal ganglion as well as anterogradely labelled terminals in the dorsolateral part of the spinal trigeminal nucleus and in the lateral part of the nucleus of the solitary tract. No labelling could be found in the geniculate ganglion, the facial nerve and the hypoglossal nucleus. Following WGA-HRP injection in the intermolar area and in the soft palate, labelling was only restricted to the trigeminal ganglion. The lamina propria of the entire palate and the corpuscle-enriched area of the incisal papilla and the soft palate were richly innervated by SP-containing fibres. Numerous SP-containing fibres were also observed in the nerve plexus at the base of the corpuscle. In addition, SP-positive neurons were identified in the trigeminal ganglion and SP-labelled terminals in the sensory trigeminal nuclear complex and in the solitary tract nucleus. On the basis of our morphological observations we conclude that the palatal corpuscular bodies are involved in taste perception which is of trigeminal origin.  相似文献   

11.
Periodontal mechanosensitive (PM) units were recorded from the trigeminal spinal tract nucleus (Vst) of the cat. The Vst is divided into three subnuclei: oralis (Vo), interpolaris (Vi), and caudalis (Vc). The receptive fields of PM units in Vo and Vi were arranged in a dorsoventral sequence in the mandibular to maxillary divisions, and those in Vc were arranged in a mediolateral sequence. The majority of Vo units were single-tooth ones, whereas more than half the Vi units and all the Vc ones were multitooth units. The PM units in each subnucleus were predominantly responsive to canine tooth stimulation. Most of the PM units in Vo and Vi gave sustained responses to pressure applied to the tooth, were directionally selective, and were most actively excited by canine tooth stimulation in the caudomedial or rostrolateral direction. Vc units, however, were transient. The threshold intensity for firings by canine tooth stimulation was less than 0.05 N. These findings indicate that only the response properties of PM units in the rostral part of Vst resemble those of the trigeminal main sensory nucleus neurons and primary afferent nerves.  相似文献   

12.
刺激家鸽上纹状体对丘脑背中腹前核神经元电活动的影响   总被引:1,自引:0,他引:1  
王彬  胡昌华 《生理学报》1993,45(2):172-177
在氨基甲酸乙酯麻醉的55只鸽上,记录和分析了丘脑背中腹前核(nueleus dorsalis inter-medius ventralis anterior thalami,DIVA)对桡神经传入冲动发生反应的88个躯体感觉单位的放电其中一部分单位还对刺激坐骨神经发生反应。电刺激上纹状体的躯体传入投射区,可引致上述DIVA躯体感觉单位的自发放电和对桡神经传入的反应发生明显抑制。对自发放电抑制的程度与上纹状体的刺激频率和刺激强度呈正相关的关系;对桡神经传入反应的抑制则是使反应潜伏期增长和锋电位减少。以上结果提示,DIVA确实隶属于躯体感觉系统,而上纹状体躯体传入投射区对其躯体感觉单位有下行的抑制性影响,这种下行抑制可能使上纹状体得以对感觉输入进行反馈控制。看来中枢神经系统高级部位与丘脑之间的这种功能联系,在鸟类和哺乳类具有相似之处。  相似文献   

13.
Immunohistochemical and radioimmunoassay studies revealed that both CGRP- and SP-like immunoreactivity in the caudal spinal trigeminal nucleus and tract, the substantia gelatinosa and the dorsal cervical spinal cord as well as in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglion is markedly depleted by capsaicin which is known to cause degeneration of a certain number of primary sensory neurons. Higher brain areas and the ventral spinal cord were not affected by capsaicin treatment. Furthermore CGRP and substance P-like immunoreactivity were shown to be colocalized in the above areas and to coexist in cell bodies of the trigeminal ganglion and the spinal dorsal root ganglia. It is suggested that CGRP, like substance P, may have a neuromodulatory role on nociception and peripheral cardiovascular reflexes.  相似文献   

14.
Summary Innervation of the cirri in three teleost species (Hypsoblennius gilberti, Hypsoblennius gentilis, Oxylebius pictus) was investigated with the use of HRP- and cobalttracing techniques. All projections were found to be ipsilateral. Labeled cells were demonstrated in both portions of the trigeminal ganglion and in the facial ganglion. Cirrus nerve fibers running in the trigeminal nerve project to terminal fields in an isthmic sensory trigeminal nucleus, to areas adjacent to the descending trigeminal root in the brainstem, and to the medial funicular nucleus in the medulla. Distribution of labeled cells in the trigeminal ganglion complex suggests a functional distinction of the two ganglion portions. Cirrus nerve fibers belonging to the facial nerve terminate in a circumscribed part of of the facial lobe, indicating a somatotopic projection. Pathways were principally the same in all three species investigated. Findings of facial innervation of teleost cirri suggest a suspected gustatory function of teleost head appendages.  相似文献   

15.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

16.
The brainstem trigeminal complex integrates somatosensory inputs from orofacial areas and meninges. Recent studies have shown the existence of a double representation of pain within the brainstem, at the level of both caudalis and oralis subnuclei. Noxious messages are mainly conveyed by C-fibers that activate the subnucleus caudalis neurons. These neurons in turn activate the subnucleus oralis whose neurons share similar features with the deep spinal dorsal horn neurons. In contrast with the nearness of the laminar organization of the dorsal horn, the vertical organization of the trigeminal complex offers an easier access for the study of segmental mechanisms of nociceptive processing. This model allowed us to show the existence of subtle NMDA-related mechanisms of segmental nocious processing. The trigeminal complex conveys nociceptive messages to several brainstem and thalamic relays that activate a number of cortical areas responsible for pain sensations and reactions. Cortical processing is sustained by reciprocal interactions with thalamic areas and also by a direct modulation of their pre-thalamic relays. The dysfunction of these multiple modulatory mechanisms probably plays a key role in the pathophysiology of chronic trigeminal pain.  相似文献   

17.
An anterograde biocytin and a retrograde WGA-colloidal gold study in the rat can provide information about reciprocal communication pathways between the red nucleus and the trigeminal sensory complex. No terminals were found within the trigeminal motor nucleus, in contrast with the facial motor nucleus. A dense terminal field was observed in the parvicellular reticular formation ventrally to the trigeminal motor nucleus. The parvicellular area may be important for the control of jaw movements by rubrotrigeminal inputs. On the other hand, the contralateral rostral parvicellular part of the red nucleus receives terminals from the same zone in the rostral part of the trigeminal sensory complex, where retrogradely labelled neurones were found after tracer injections into the red nucleus. Such relationships could be part of a control loop for somatosensory information from the orofacial area.  相似文献   

18.
用追踪和免疫电镜技术研究三叉神经尾侧亚核(Vc)内P物质受体(SPR)阳性神经元与初级传入和下行投射之间的突触联系。光镜观察发现,在Vc浅层,SPR阳性神经元的分布与RMg下行投射终末的分布有重叠。电镜观察发现,三叉初级传入终末和SPR阳性神经元树突形成非对称性轴树突触;RMg下行投射终末与SPR阳性神经元树突也形成非对称性轴树突触,提示RMg下行投射纤维可能通过直接作用于丘脑投射神经元对三叉初级传入的伤害性信息进行调控。  相似文献   

19.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

20.
Prrxl1-CreER(T2) transgenic mice expressing tamoxifen-inducible Cre recombinase were generated by modifying a Prrxl1-containing BAC clone. Cre recombination activity was examined in Prrxl1-CreER(T2); Rosa26 reporter mice at various embryonic and postnatal stages. Pregnant mice were treated with a single dose of tamoxifen at embryonic day (E) 9.5 or E12.5, and X-gal staining was performed 2 days later. Strong X-gal staining was observed in the somatosensory ganglia (e.g., dorsal root and trigeminal ganglia) and the first central sites for processing somatosensory information (e.g., spinal dorsal horn and trigeminal nerve-associated nuclei). When tamoxifen was administered at postnatal day (P) 20 or in adulthood (P120), strong Cre recombination activity was present in the primary somatosensory ganglia, while weak Cre recombination activity was found in the spinal dorsal horn, mesencephalic trigeminal nucleus, principal sensory trigeminal nucleus, and spinal trigeminal nucleus. This mouse line provides a useful tool for exploring genes' functions in the somatosensory system in a time-controlled way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号