首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M C Berndt  X P Du  W J Booth 《Biochemistry》1988,27(2):633-640
Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The platelet receptor for von Willebrand factor (vWF), glycoprotein Ib-IX (GPIb-IX), mediates initial platelet adhesion and activation. We show here that the receptor function of GPIb-IX is regulated intracellularly via its link to the filamin-associated membrane skeleton. Deletion of the filamin binding site in GPIb(alpha) markedly enhances ristocetin- (or botrocetin)-induced vWF binding and allows GPIb-IX-expressing cells to adhere to immobilized vWF under both static and flow conditions. Cytochalasin D (CD) that depolymerizes actin also enhances vWF binding to wild type GPIb-IX. Thus, vWF binding to GPIb-IX is negatively regulated by the filamin-associated membrane skeleton. In contrast to native vWF, binding of the isolated recombinant vWF A1 domain to wild type and filamin binding-deficient mutants of GPIb-IX is comparable, suggesting that the membrane skeleton-associated GPIb-IX is in a state that prevents access to the A1 domain in macromolecular vWF. In platelets, there is a balance of membrane skeleton-associated and free forms of GPIb-IX. Treatment of platelets with CD increases the free form and enhances vWF binding. CD also reverses the inhibitory effects of prostaglandin E1 on vWF binding to GPIb-IX. Thus, GPIb-IX-dependent platelet adhesion is doubly controlled by vWF conformation and a membrane skeleton-dependent inside-out signal.  相似文献   

3.
We have expressed in mammalian cells a fragment (residues 1-302) of the alpha chain of platelet glycoprotein (GP) Ib containing the von Willebrand factor- (vWF) binding site. The secreted soluble protein had an apparent molecular mass of 45 kDa and reacted with conformation-dependent monoclonal antibodies that bind only to native GP Ib, thus demonstrating its proper folding. After insolubilization on nitrocellulose membrane, the recombinant GP Ib alpha fragment bound soluble vWF in the presence of ristocetin or botrocetin with a dissociation constant similar to that exhibited by GP Ib.IX complex on platelets. Moreover, the interaction was blocked by anti-GP Ib monoclonal antibodies known to inhibit vWF binding to platelets. The sequence of GP Ib alpha between residues 269-287 has a strong net negative charge due to the presence of 10 glutamic or aspartic acid residues; 5 of these are contained in the sequence of a synthetic peptide (residues 251-279) previously shown to inhibit vWF-platelet interaction. In order to evaluate the possible functional role of these acidic residues, we employed site-directed mutagenesis to express two mutant GP Ib alpha fragments containing asparagine or glutamine instead of aspartic or glutamic acid, respectively. Mutant 1, with substitutions between residues 251-279, failed to bind vWF whether in the presence of ristocetin or botrocetin; in contrast, vWF binding to Mutant 2, with substitutions between residues 280-302, was nearly normal in the presence of ristocetin, but markedly decreased in the presence of botrocetin. Thus, mammalian cells transfected with a truncated cDNA sequence encoding the amino-terminal domain of GP Ib alpha synthesize a fully functional vWF-binding site; acidic residues in the sequence 252-287 are essential for normal function.  相似文献   

4.
The binding of von Willebrand factor (vWF) to the platelet receptor glycoprotein (GP) Ib-IX complex is a key event in hemostasis and may participate in the development of thrombotic vascular occlusion. We present here evidence that residues Ser251-Tyr279 in the GP Ib alpha-chain participate in this function. Initial studies suggested that the modality of vWF interaction with GP Ib depended on the conditions used for induction of binding, either in the presence of ristocetin, or botrocetin, or with asialo-vWF. In fact, only the 45-kDa amino-terminal fragment of GP Ib alpha inhibited the vWF-GP Ib interaction under all conditions tested, while the 84-kDa macroglycopeptide was significantly effective only in the presence of ristocetin. Moreover, the 45-kDa fragment with reduced disulfide bonds still inhibited ristocetin-induced binding but had no effect, at the concentrations tested, on botrocetin-mediated or direct asialo-vWF binding. In order to localize in more detail the functional site, the entire sequence of the 45-kDa fragment was reproduced in 27 overlapping synthetic peptides that were then used in inhibition of binding assays. This led to the identification of a linear GP Ib alpha sequence (residues Ser251-Tyr279) that effectively inhibited platelet interaction with vWF mediated by ristocetin and, at higher concentration, also by botrocetin. A shorter peptide overlapping with the longer one (residues Gly271-Glu285) was the second most active inhibitory species. This region of the molecule contains several residues with a high surface probability index, as expected for a site involved in ligand binding. Thus, while native conformation of GP Ib alpha appears to be important for optimal interaction with vWF, the results obtained with short synthetic peptides may help in defining the amino acid residues participating in this essential function.  相似文献   

5.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

6.
A full-length cDNA for vWF has been cloned from a human lung cDNA library and a fragment of this cDNA has been modified to allow its expression in E. coli. This fragment, which corresponds to Val 449-Asn 730 of vWF and includes the GPIb-binding domain and binding sites for collagen and heparin, was subcloned into an expression vector containing an inducible lambda PL promoter. On induction, the expressed recombinant vWF subfragment migrated with a mol wt of around 38,000 after SDS-PAGE. It was identified as a vWF fragment by Western blotting using either a polyclonal or a monoclonal antibody which inhibits the binding of vWF to GPIb. Following solubilization in urea, the bacterial extract inhibited ristocetin-induced platelet aggregation and bound to ristocetin-treated platelets, to collagen and to heparin.  相似文献   

7.
The first stage in hemostasis is the binding of the platelet membrane receptor glycoprotein (GP) Ib-IX complex to the A1 domain of von Willebrand factor in the subendothelium. A bleeding disorder associated with this interaction is platelet-type von Willebrand disease, which results from gain-of-function (GOF) mutations in amino acid residues 233 or 239 of the GP Ibalpha subunit of GP Ib-IX. Using optical tweezers and a quadrant photodetector, we investigated the binding of A1 to GOF and loss-of-function mutants of GP Ibalpha with mutations in the region containing the two known naturally occurring mutations. By dynamically measuring unbinding force profiles at loading rates ranging from 200-20,000 pN/s, we found that the bond strengths between A1 and GP Ibalpha GOF mutants (233, 235, 237, and 239) were significantly greater than the A1/wild-type GP Ib-IX bond at all loading rates examined (p < 0.05). In addition, mutants 231 and 232 exhibited significantly lower bond strengths with A1 than the wild-type receptors (p < 0.05). We computed unloaded dissociation rate constant (k(off)(0)) values for interactions involving mutant and wild-type GP Ib-IX receptors with A1 and found the A1/wild-type GP Ib-IX k(off)(0) value of 5.47 +/- 0.25 s(-1) to be significantly greater than the GOF k(off)(0) values and significantly less than the loss-of-function k(off)(0) values. Our data illustrate the importance of the bond kinetics associated with the VWF/GP Ib-IX interaction in hemostasis and also demonstrate the drastic changes in binding that can occur when only a single amino acid of GP Ibalpha is altered.  相似文献   

8.
von Willebrand factor (vWF) is a multimeric plasma glycoprotein that mediates platelet adhesion to the subendothelium via binding to platelet glycoprotein Ib (GPIb) and to components of the vessel wall. Recently, missense mutations that cause type IIB von Willebrand disease (vWD) were described, clustered within a disulfide loop in the A1 domain of vWF that has binding sites for GPIb, collagen, and heparin. In type IIB vWD, plasma vWF exhibits increased affinity for platelet GPIb, but decreased binding to collagen and heparin. The effect was studied of a type IIB vWD mutation, Arg578-->Gln, on the interaction of vWF with GPIb, collagen, and heparin. Recombinant wild type rvWF and mutant rvWF(R578Q) were expressed in COS-7 cells. Ristocetin-induced binding of rvWF(R578Q) to GPIb was markedly increased compared with rvWF, confirming that the Arg578-->Gln mutation causes the characteristic gain-of-function abnormality of type IIB vWD; botrocetin-induced binding was only slightly increased. Binding to collagen type III and heparin-agarose was compared for rvWF(R578Q) and plasma vWF from patients with four different type IIB mutations: Arg543-->Trp, Arg545-->Cys, Val553-->Met, Arg578-->Gln. For all of the plasma samples, binding to collagen and to heparin was reduced compared with normal plasma. In contrast, binding of rvWF(R578Q) to collagen and heparin was normal compared with wild type rvWF. Therefore, the Arg578-->Gln mutation increases the affinity of vWF for GPIb but does not directly impair vWF interaction with collagen or heparin. Arg578 may therefore be necessary to prevent normal vWF from interacting with GPIb. In type IIB vWD, the defective binding of plasma vWF to collagen and heparin may be secondary to post-synthetic modifications that occur in vivo, such as the loss of high molecular weight vWF multimers.  相似文献   

9.
We have expressed in Escherichia coli the domain of von Willebrand factor (vWF) containing the binding site for platelet glycoprotein (GP) Ib and used it to study the regulation of vWF-platelet interaction. The recombinant fragment, comprising residues 445-733 of the mature vWF subunit and designated rvWF445-733, did not have the native conformation of the corresponding domain in the intact molecule because, in order to prevent formation of random aggregates, the seven cysteine residues in the sequence were reduced and alkylated. Unlike native vWF, rvWF445-733 bound to GP Ib in the absence of any modulator, suggesting that the lack of disulfide bonds and/or carbohydrate side chains within this domain may expose platelet interaction sites. In the presence of two modulators, the glycopeptide ristocetin and the snake protein botrocetin, rvWF445-733 inhibited native vWF binding to GP Ib as well as platelet aggregation mediated by vWF, suggesting that both the fragment and the native molecule interact with the same site on platelets. This conclusion was also supported by the observation that the recombinant fragment competed with the binding to platelets of an anti-GP Ib monoclonal antibody known to inhibit vWF binding. Botrocetin formed a complex with rvWF445-733, but the affinity of this interaction was approximately 25-fold lower than with native vWF. However, the complexes of botrocetin with either rvWF445-733 or multimeric native vWF bound to GP Ib with similar dissociation constant. Therefore, conformational attributes of vWF regulate its affinity for botrocetin, but once the complex is formed, interaction with GP Ib is independent of native vWF conformation. These findings provide insights into the regulation of vWF-platelet interaction.  相似文献   

10.
Interaction of von Willebrand factor (vWF) with its platelet receptor only occurs in vitro in the presence of a modulator such as ristocetin. We have recently confirmed that the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor involved in the ristocetin-dependent binding of vWF by reconstitution with the purified components [Berndt, M.C., Du, X., & Booth, W.J. (1988) Biochemistry 27, 633-640]. We have now developed a similar solid-phase reconstitution assay using an alternate modulator, botrocetin, for the competitive analysis of functional domains in both vWF and the GP Ib-IX complex. Botrocetin was purified from Bothrops jararaca venom by ammonium sulfate fractionation and subsequent DEAE-cellulose and hydroxylapatite chromatography. The purified protein was a 25-kilodalton (kDa) disulfide-linked dimer with apparent subunit molecular weights of 14,000 and 14,500. Binding studies with immobilized botrocetin demonstrated that botrocetin bound to vWF and to a 52/48-kDa region of vWF that contains the GP Ib binding domain, but not to glycocalicin, a proteolytic fragment of GP Ib that contains the vWF binding site. Binding of 125I-labeled vWF to GP Ib-IX complex coated beads and to platelets was strictly botrocetin-dependent with half-maximal binding at a botrocetin concentration of congruent to 0.27 microM. Botrocetin-dependent binding of vWF was specific, saturable, and comparable to that observed with ristocetin. An anti-vWF monoclonal antibody, 3F8, inhibited ristocetin- but not botrocetin-dependent binding of vWF, suggesting the presence of distinct ristocetin and botrocetin modulator sites on vWF. The botrocetin reconstitution assay was at least an order of magnitude more sensitive than the corresponding ristocetin assay for the competitive analysis of functional domains on both vWF and the GP Ib-IX complex and has confirmed the localization of the vWF-binding domain to the 45-kDa N-terminal region of GP Ib.  相似文献   

11.
Factor XII deficiency has been postulated to be a risk factor for thrombosis suggesting that factor XII is an antithrombotic protein. The biochemical mechanism leading to this clinical observation is unknown. We have previously reported high molecular weight kininogen (HK) inhibition of thrombin-induced platelet aggregation by binding to the platelet glycoprotein (GP) Ib-IX-V complex. Although factor XII will bind to the intact platelet through GP Ibalpha (glycocalicin) without activation, we now report that factor XIIa (0. 37 microm), but not factor XII zymogen, is required for the inhibition of thrombin-induced platelet aggregation. Factor XIIa had no significant effect on SFLLRN-induced platelet aggregation. Moreover, an antibody to the thrombin site on protease-activated receptor-1 failed to block factor XII binding to platelets. Inhibition of thrombin-induced platelet aggregation was demonstrated with factor XIIa but not with factor XII zymogen or factor XIIf, indicating that the conformational exposure of the heavy chain following proteolytic activation is required for inhibition. However, inactivation of the catalytic activity of factor XIIa did not affect the inhibition of thrombin-induced platelet aggregation. Factor XII showed displacement of biotin-labeled HK (30 nm) binding to gel-filtered platelets and, at concentrations of 50 nm, was able to block 50% of the HK binding, suggesting involvement of the GP Ib complex. Antibodies to GP Ib and GP IX, which inhibited HK binding to platelets, did not block factor XII binding. However, using a biosensor, which monitors protein-protein interactions, both HK and factor XII bind to GP Ibalpha. Factor XII may serve to regulate thrombin binding to the GP Ib receptor by co-localizing with HK, to control the extent of platelet aggregation in vivo.  相似文献   

12.
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.  相似文献   

13.
Subendothelial collagen plays an important role, via both direct and indirect mechanisms, in the initiation of thrombus formation at sites of vascular injury. Collagen binds plasma von Willebrand factor, which mediates platelet recruitment to collagen under high shear. Subsequently, the direct binding of the platelet receptors glycoprotein VI and alpha2beta1 to collagen is critical for platelet activation and stable adhesion. Leeches, have evolved a number of inhibitors directed towards platelet-collagen interactions so as to prevent hemostasis in the host during hematophagy. In this article, we describe the molecular mechanisms underlying the ability of the leech product saratin to inhibit platelet binding to collagen. In the presence of inhibitors of ADP and thromboxane A2, both saratin and 6F1, a blocking alpha2beta1 mAb, abrogated platelet adhesion to fibrillar and soluble collagen. Additionally, saratin eliminated alpha2beta1-dependent platelet adhesion to soluble collagen in the presence of an Src kinase inhibitor. Moreover, saratin prevented platelet-rich plasma adhesion to fibrillar collagen, a process dependent upon both alpha2beta1 and von Willebrand factor binding to collagen. Furthermore, saratin specifically inhibited the binding of the alpha2 integrin subunit I domain to collagen, and prevented platelet adhesion to collagen under flow to the same extent as observed in the presence of a combination of mAbs to glycoprotein Ib and alpha2beta1. These results demonstrate that saratin interferes with integrin alpha2beta1 binding to collagen in addition to inhibiting von Willebrand factor-collagen binding, presumably by binding to an overlapping epitope on collagen. This has significant implications for the use of saratin as a tool to inhibit platelet-collagen interactions.  相似文献   

14.
The interaction of the platelet glycoprotein (GP) Ib-IX-V complex with von Willebrand factor (VWF) is a critical step in the adhesion of platelets to the subendothelial matrix following endothelial cell damage, particularly under arterial flow conditions. In the human GP Ib-IX-V complex, the recognition of VWF appears to be mediated entirely by GP Ibalpha, the largest of four GP Ib-IX-V polypeptides. The goal of the present study was to investigate the involvement of the cytoplasmic domain of GP Ibalpha in the GP Ib-IX-VWF interaction under both static conditions and in the presence of high fluid shear stress. Using Chinese hamster ovary (CHO) cells that express GP Ibbeta, GP IX, and either wild-type GP Ibalpha or GP Ibalpha mutants missing various lengths of the cytoplasmic domain, we evaluated adhesion and flow-driven cell rolling on immobilized VWF in a parallel-plate flow chamber. Cells expressing GP Ibalpha polypeptides with truncations of 6-82 amino acids rolled faster than cells expressing wild-type GP Ibalpha. Cells that expressed polypeptides with intact actin-binding protein 280 binding sites (truncated to residue 582 of 610) rolled more slowly than those expressing GP Ibalpha with longer truncations. The rolling velocity of cells expressing truncated GP Ibalpha mutants increased with decreasing VWF coating density. In addition, a fraction of the truncated cells exhibited saltatory translocation at the lower VWF densities. Studies measuring the GP Ibalpha-VWF bond strength of three of the mutants using laser tweezers showed that progressive deletion of the cytoplasmic domain led to progressive weakening of the strength of individual GP Ibalpha-VWF bonds.  相似文献   

15.
We have used purified proteolytic fragments of von Willebrand factor (vWF) to characterize three related functional sites of the molecule that support interaction with platelet glycoprotein Ib, collagen, and heparin. A fragment of 116 kDa was found to be dimeric and consisted of disulfide-linked subunits which, after reduction and alkylation, corresponded to the previously described 52/48-kDa fragment extending from residue 449 to 728. Fragment III-T2, also a dimer, was composed of two pairs of disulfide-linked subunits, two 35-kDa heavy chains (residues 273-511) and two 10-kDa light chains (residues 674-728). The 116-kDa fragment, but not the constituent 52/48-kDa subunit, supported ristocetin-induced platelet aggregation and retained 20% (on a molar basis) of the ristocetin cofactor activity of native vWF; fragment III-T2 retained less than 5% activity. All three fragments, however, inhibited vWF interaction with glycoprotein Ib. Both 116-kDa and 52/48-kDa fragments inhibited vWF binding to heparin with similar potency, while fragment III-T2 had no effect in this regard. Only the 116-kDa fragment inhibited vWF binding to collagen. These results indicate that dimeric fragments containing two glycoprotein Ib-binding sites possess the minimal valency sufficient to support ristocetin-induced aggregation. The sequence comprising residues 512-673, missing in fragment III-T2, is necessary for binding to heparin and collagen and may be crucial for anchoring vWF to the subendothelium. Immunochemical and functional data suggest that the same sequence, although not essential for interaction with glycoprotein Ib, may influence the activity of the glycoprotein Ib-binding site. Only binding to collagen has absolute requirement for intact disulfide bonds. Thus, the three functional sites contained in the 116-kDa domain of vWF are structurally distinct.  相似文献   

16.
As the first step in hemostasis, the binding of von Willebrand factor (vWF) to the platelet membrane glycoprotein (GP) Ib-IX complex is essential for platelet adhesion at high-shear blood flow. This interaction in vivo requires the prior binding of vWF to the subendothelial matrix, a process which exposes a normally cryptic binding site on vWF for the GP Ib-IX complex. This process can be mimicked in vitro by modulators such as ristocetin or the snake venom protein botrocetin or by desialation of vWF. We have previously localized the GP Ib binding site on vWF to a monomeric dispase fragment which extends from Leu-480/Val-481 to Gly-718 in the primary sequence of mature vWF [Andrews, R. K., Gorman, J. J., Booth, W. J., Corino, G. L., Castaldi, P. A., & Berndt, M. C. (1989) Biochemistry 28, 8326-8336]. This fragment also contains a distinct binding site for botrocetin. Analysis of synthetic peptides corresponding to hydrophilic stretches of sequence within this fragment indicated that the sequence Asp-514-Glu-542 represents a major adhesive sequence involved in receptor recognition. This peptide inhibited both the ristocetin- and botrocetin-mediated binding of vWF to either platelets or purified GP Ib-IX complex (IC50 approximately 50-200 microM) as well as the asialo-vWF- and bovine vWF-dependent agglutination of platelets. Both the N- and C-terminal halves of the peptide were inhibitory but less so than the intact peptide. This peptide also inhibited botrocetin binding to vWF, suggesting that botrocetin modulates vWF-GP Ib interaction by binding in close proximity to the vWF adhesion sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Glycoprotein Ibα (GpIbα) binding ability of A1 domain of von Willebrand factor (vWF) facilitates platelet adhesion that plays a crucial role in maintaining hemostasis and thrombosis at the site of vascular damage. There are both “loss as well as gain of function” mutations observed in this domain. Naturally occurring “gain of function” mutations leave self-activating impacts on the A1 domain which turns the normal binding to characteristic constitutive binding with GPIbα. These “gain of function” mutations are associated with the von Willebrand disease type 2B. In recent years, studies focused on understanding the mechanism and conformational patterns attached to these phenomena have been conducted, but the conformational pathways leading to such binding patterns are poorly understood as of now. To obtain a microscopic picture of such events for the better understanding of pathways, we used molecular dynamics (MD) simulations along with principal component analysis and normal mode analysis to study the effects of Pro1266Leu (Pro503Leu in structural context) mutation on the structure and function of A1 domain of vWF. MD simulations have provided atomic-level details of intermolecular motions as a function of time to understand the dynamic behavior of A1 domain of vWF. Comparative analysis of the trajectories obtained from MD simulations of both the wild type and Pro503Leu mutant suggesting appreciable conformational changes in the structure of mutant which might provide a basis for assuming the “gain of function” effects of these mutations on the A1 domain of vWF, resulting in the constitutive binding with GpIbα.  相似文献   

18.
Although the role of collagen in thrombosis has been extensively investigated, the contribution of other extracellular matrices is still unclear. We have recently reported that laminin stimulates platelet spreading through integrin alpha(6)beta(1)-dependent activation of the collagen receptor glycoprotein (GP) VI under static condition. Under physiological high and low shear conditions, platelets adhered to laminin, and this was strongly inhibited by an antibody that blocks association between GPIb-IX-V and von Willebrand factor (VWF). Moreover, platelets of type III von Willebrand disease or Bernard-Soulier syndrome adhered to laminin at a low shear condition but not at a high shear condition. The specific binding of laminin to VWF was confirmed by surface plasmin resonance spectroscopy (BIAcore). These findings suggest that laminin supports platelet adhesion depending on the interaction of VWF and GPIb-IX-V under pathophysiological high shear flow. This mechanism is similar to that of collagen. We propose that integrins, GPVI, GPIb-IX-V, and VWF represent a general paradigm for the interaction between platelets and subendothelial matrices.  相似文献   

19.
At the site of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion to subendothelial connective tissue through binding to the N-terminal domain of the alpha chain of platelet glycoprotein Ib (GPIbalpha). To elucidate the molecular mechanisms of the binding, we have employed charged-to-alanine scanning mutagenesis of the soluble fragment containing the N-terminal 287 amino acids of GPIbalpha. Sixty-two charged amino acids were changed singly or in small clusters, and 38 mutant constructs were expressed in the supernatant of 293T cells. Each mutant was assayed for binding to several monoclonal antibodies for human GPIbalpha and for ristocetin-induced and botrocetin-induced binding of 125I-labeled human VWF. Mutations at Glu128, Glu172, and Asp175 specifically decreased both ristocetin- and botrocetin-induced VWF binding, suggesting that these sites are important for VWF binding of platelet GPIb. Monoclonal antibody 6D1 inhibited ristocetin- and botrocetin-induced VWF binding, and a mutation at Glu125 specifically reduced the binding to 6D1. In contrast, antibody HPL7 had no effect for VWF binding, and mutant E121A reduced the HPL7 binding. Mutations at His12 and Glu14 decreased the ristocetin-induced VWF binding with normal botrocetin-induced binding. Crystallographic modeling of the VWF-GPIbalpha complex indicated that Glu128 and Asp175 form VWF binding sites; the binding of 6D1 to Glu125 interrupts the VWF binding of Glu128, but HPL7 binding to Glu121 has no effect on VWF binding. Moreover, His12 and Glu14 contact with Glu613 and Arg571 of VWF A1 domain, whose mutations had shown similar phenotype. These findings indicated the novel binding sites required for VWF binding of human GPIbalpha.  相似文献   

20.
Yan R  Mo X  Paredes AM  Dai K  Lanza F  Cruz MA  Li R 《Biochemistry》2011,50(49):10598-10606
The glycoprotein Ib-IX (GPIb-IX) complex expressed on platelet plasma membrane is involved in thrombosis and hemostasis via the initiation of adhesion of platelets to von Willebrand factor (VWF) exposed at the injured vessel wall. While most of the knowledge of the GPIb-IX complex was obtained from studies on platelets and transfected mammalian cells expressing the GPIb-IX complex, there is not an in vitro membrane system that allows systematic analysis of this receptor. The phospholipid bilayer Nanodisc composed of a patch of phospholipid surrounded by membrane scaffold protein is an attractive tool for membrane protein study. We show here that the GPIb-IX complex purified from human platelets has been reconstituted into the Nanodisc. The Nanodisc-reconstituted GPIb-IX complex was able to bind various conformation-sensitive monoclonal antibodies. Furthermore, it bound to VWF in the presence of botrocetin with an apparent K(d) of 0.73 ± 0.07 nM. The binding to VWF was inhibited by anti-GPIbα antibodies with epitopes overlapping with the VWF-binding site, but not by anti-GPIbβ monoclonal antibody RAM.1. Finally, the Nanodisc-reconstituted GPIb-IX complex exhibited ligand binding activity similar to that of the isolated extracellular domain of GPIbα. In conclusion, the GPIb-IX complex in Nanodiscs adopts a native-like conformation and possesses the ability to bind its natural ligands, thus making a Nanodisc a suitable in vitro platform for further investigation of this hemostatically important receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号