首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Randall T. Ryti 《Oecologia》1984,64(2):184-190
Summary The density and presence of 18 saxicolous (occurring among rocks) perennial plant species were measured on 61 habitat islands in Baja California. These data were compared with a random colonization simulation that placed species on islands in direct proportion to species densities and island areas. The initial simulation placed too many species on the islands. This problem was rectified by introducing the effects of within island seed dispersal. Both the data and the simulations showed patterns of density compensation. Density compensation is usually perceived as being evidence of interspecific competition; however, it could be caused by other factors, such as lack of predators or habitat differences between the islands. Since the simulation included no differences between the species in their competitive ability, I used the deviations of the simulations from the data as a measure of relative competitive ability. A conservative requirement for demonstrating that competition affects the densities of these species is finding an ecological tradeoff between colonizing and competitive ability. There was no evidence for a tradeoff between competitive and colonizing ability. The dispersal method of the plants (either animal or wind) had a larger but nonsignificant effect on the deviations. Thus there is no evidence for competition affecting the deviations in density and occurrence of these species from the simulations. Random colonization including the effects of both multiple source pools and perhaps the dispersal method of the species is the most parsimonious explanation for the density and diversity patterns.  相似文献   

2.
Recent models have shown that the development of spatial structure in plant mixtures may make strong competitive interactions between species hard to detect owing to spatial segregation of the competing species. Here we address the issue of measuring interspecific competition using a simulation based on a neighbourhood population model which assumes that both dispersal and competitive interactions are localized. Using known parameter combinations we use the model to test the power and efficiency of two approaches for detecting and measuring competition. The first approach is based on measuring the response of communities to the removal of neighbours. Measures of interspecific competition based on this approach are extremely biased by spatial segregation of species, although this bias may be partially overcome by altering the spatial scale at which the effects of removals are recorded. The second approach is based on multiple regression of per capita population growth rates on local densities of the interacting species. When dispersal is restricted, the regression approach provides accurate estimates of interspecific competition coefficients when the scale of the sampling unit (i.e. the quadrats within which plants are counted) is large compared to the scale at which interactions and dispersal occur. When seeds disperse globally the removal method performs best; the regression method fails because sampling units do not form closed dynamic systems. Our results highlight the importance of tailoring methods for detecting competition to the characteristics of the species in question. They also indicate that rapid nonmanipulative estimates of competition coefficients may be the best approach in communities where dispersal is restricted and competitive interactions localized, which is likely to be the case for the majority of plants.  相似文献   

3.
Non‐random patterns of species segregation and aggregation within ecological communities are often interpreted as evidence for interspecific interactions. However, it is unclear whether theoretical models can predict such patterns and how environmental factors may modify the effects of species interactions on species co‐occurrence. Here we extend a spatially explicit neutral model by including competitive effects on birth and death probabilities to assess whether competition alone is able to produce non‐random patterns of species co‐occurrence. We show that transitive and intransitive competitive hierarchies alone (in the absence of environmental heterogeneity) are indeed able to generate non‐random patterns with commonly used metrics and null models. Moreover, even weak levels of intransitive competition can increase local species richness. However, there is no simple rule or consistent directional change towards aggregation or segregation caused by competitive interactions. Instead, the spatial pattern depends on both the type of species interaction and the strength of dispersal. We conclude that co‐occurrence analysis alone may not able to identify the underlying processes that generate the patterns.  相似文献   

4.
The growth of each individual in plant populations was simulatedby a spatial competition model for five density levels and fourdifferent spatial distribution patterns of individuals, varyingfrom highly clumped to regular. The simulation results wereanalysed using the diffusion model for evaluating the effectsof density and distribution pattern on the size-structure dynamicsin relation to the degree of competitive asymmetry. At low densities,changes in statistics of plant weight over time such as mean,coefficient of variation, skewness, and Box-Cox-transformedkurtosis differed greatly among spatial patterns, irrespectiveof the degree of competitive asymmetry. In completely symmetriccompetition, the spatial effect on size-structure dynamics remainedrelatively large irrespective of densities, although mean plantweight became similar among the spatial patterns with increasingdensity. However, the spatial effect diminished with increaseddensity in strongly asymmetric competition, when similar sizedistributions were realized irrespective of the spatial patterns.Therefore, it was concluded that: (1) irrespective of the degreeof competitive asymmetry, spatial pattern is important for size-structuredynamics at low densities; (2) spatial pattern is nearly immaterialunder strongly asymmetric competition at high densities; and(3) under crowded conditions, neighbourhood effects are muchmore apparent at the population level in less asymmetric competition.These processes and outcomes are linked to the forms of thefunctions of mean growth rate of individuals [G(t,x) function]and variance in growth rate [D(t,x) function]. These functionsare variable depending on the spatial pattern under symmetriccompetition, but are rather stable under strongly asymmetriccompetition at high densities irrespective of the spatial patterns.Therefore, size structure under strongly asymmetric competitioncan be regarded as a stable system, whereas that under symmetriccompetition is regarded as a variable system in relation tothe spatial pattern and process. From this, it was inferredthat: (1) the goodness-of-fit of spatial competition modelsfor crowded plant populations is higher in less asymmetric competition;and (2) higher species diversity in plant communities is associatedwith the lower degree of competitive asymmetry.Copyright 1994,1999 Academic Press Asymmetric competition, diffusion model, neighbourhood effect, size-structure stability, spatial competition model, spatial distribution pattern, species diversity, symmetric competition  相似文献   

5.
The correspondence between species distribution and the environment depends on species’ ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.  相似文献   

6.
On the relationship between niche and distribution   总被引:12,自引:0,他引:12  
Applications of Hutchinson's n -dimensional niche concept are often focused on the role of interspecific competition in shaping species distribution patterns. In this paper, I discuss a variety of factors, in addition to competition, that influence the observed relationship between species distribution and the availability of suitable habitat. In particular, I show that Hutchinson's niche concept can be modified to incorporate the influences of niche width, habitat availability and dispersal, as well as interspecific competition per se . I introduce a simulation model called NICHE that embodies many of Hutchinson's original niche concepts and use this model to predict patterns of species distribution. The model may help to clarify how dispersal, niche size and competition interact, and under what conditions species might be common in unsuitable habitat or absent from suitable habitat. A brief review of the pertinent literature suggests that species are often absent from suitable habitat and present in unsuitable habitat, in ways predicted by theory. However, most tests of niche theory are hampered by inadequate consideration of what does and does not constitute suitable habitat. More conclusive evidence for these predictions will require rigorous determination of habitat suitability under field conditions. I suggest that to do this, ecologists must measure habitat specific demography and quantify how demographic parameters vary in response to temporal and spatial variation in measurable niche dimensions.  相似文献   

7.
Dispersal among sites can affect within-site competitive outcomes via source-sink dynamics. Source-sink dynamics are thought to affect competitive outcomes primarily via spatial subsidies: by redistributing individuals from sources to sinks, source-sink dynamics can alter competitive outcomes in both sources and sinks. However, dispersal also can affect competitive outcomes via demography modification, which occurs when dispersal alters the parameters governing species' per capita demographic rates. For instance, dispersal of exploitative competitors might cause extinction of some of the resources for which competition occurs, thereby altering the competition coefficients. I used protist microcosms as a model system to test whether spatial subsidies alone could explain the effects of source-sink dynamics on competitive outcomes. I examined the long-term outcome of exploitative competition among three bacterivorous ciliate protists in microcosms of high enrichment (sources) and low enrichment (sinks) in both the presence and the absence of dispersal. Dispersal altered competitive outcomes. Fitting mathematical models to the population dynamics revealed that spatial subsidies were insufficient to account for the effects of dispersal. Fitting alternative models strongly suggested that demography modification was an important determinant of competitive outcomes. These results provide the first evidence that dispersal does not simply redistribute competitors but can alter their per capita demographic rates.  相似文献   

8.
Functional trait diversity is a popular tool in modern ecology, mainly used to infer assembly processes and ecosystem functioning. Patterns of functional trait diversity are shaped by ecological processes such as environmental filtering, species interactions and dispersal that are inherently spatial, and different processes may operate at different spatial scales. Adding a spatial dimension to the analysis of functional trait diversity may thus increase our ability to infer community assembly processes and to predict change in assembly processes following disturbance or land‐use change. Richness, evenness and divergence of functional traits are commonly used indices of functional trait diversity that are known to respond differently to large‐scale filters related to environmental heterogeneity and dispersal and fine‐scale filters related to species interactions (competition). Recent developments in spatial statistics make it possible to separately quantify large‐scale patterns (variation in local means) and fine‐scale patterns (variation around local means) by decomposing overall spatial autocorrelation quantified by Moran's coefficient into its positive and negative components using Moran eigenvector maps (MEM). We thus propose to identify the spatial signature of multiple ecological processes that are potentially acting at different spatial scales by contrasting positive and negative components of spatial autocorrelation for each of the three indices of functional trait diversity. We illustrate this approach with a case study from riparian plant communities, where we test the effects of disturbance on spatial patterns of functional trait diversity. The fine‐scale pattern of all three indices was increased in the disturbed versus control habitat, suggesting an increase in local scale competition and an overall increase in unexplained variance in the post‐disturbance versus control community. Further research using simulation modeling should focus on establishing the proposed link between community assembly rules and spatial patterns of functional trait diversity to maximize our ability to infer multiple processes from spatial community structure.  相似文献   

9.
Aims Species aggregation is commonly seen in plant communities and may increase diversity by causing intraspecific competition to exceed interspecific competition. One potential source of this spatial aggregation is seed dispersal but it is unclear to what extent aggregated seed distributions affect plant diversity in real communities. Using a field experiment, I tested whether uniform or aggregated seed arrival alters community structure and whether these effects vary with sowing density.Methods The experiment consisted of two spatial seeding treatments (uniform and aggregated) that were fully crossed with three seed density treatments. Sixty, 3 × 4-m plots were arrayed in a low-diversity grassland located in Kansas, USA. Each plot was divided into forty-eight, 0.5 × 0.5-m patches. For aggregated seeding treatments, each of the 15 species was sown into three randomly selected patches within the plot (3×15 = 45). To create a uniform species arrival but control for the seed addition method, all 15 species were sown into 45 individual patches (with three patches remaining unsown) within each plot. Seed mass for each species was held constant at the plot scale between uniform or aggregated treatments within a given level of the sowing density treatment. After two growing seasons, plant density was quantified for all sown species in 15 randomly selected patches from each plot.Important findings I found evidence for shifts in community structure in response to the different spatial seeding patterns. The evenness of added species was higher under aggregated than uniform sowing patterns. There was no detectable effect of aggregated seed sowing on species richness at 3.75 m 2 scale. However, when species richness was extrapolated to larger scales (11.25 m 2), aggregated sowing was predicted to have greater richness than uniform sowing. Effects of seed aggregation on community structure were apparent only at moderate to high sowing rates, yet the latter are within the range of measured seed dispersal in similar grasslands. Additionally, as sowing density increased, seed mass became an increasingly effective predictor of relative abundances for added species, but only under uniform sowing patterns supporting the idea that aggregated dispersal may buffer weaker (smaller seeded) species from competition during colonization. This is the first experiment to show that aggregated seed dispersal patterns can increase at least some components of plant diversity in undisturbed grasslands and suggests that previous seed dispersal experiments, which utilize uniform seed sowing, may underestimate the potential effect of dispersal on plant community structure.  相似文献   

10.
Metacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.  相似文献   

11.
Laure Gallien 《Oikos》2017,126(5):615-623
Can competitive interactions be inferred from the analysis of community functional diversity patterns? Originally, at the scale of a community, competitive interactions were supposed to generate trait overdispersion patterns due to limiting similarity process. More recently, by highlighting the importance of competitive hierarchies, it has been shown that when only one resource limits species coexistence, competition can also lead to patterns of trait clustering. However, these two expectations (overdispersion and clustering) ignore potential multi‐species indirect competitive interactions, and especially intransitive competition. Indeed, little is yet known about intransitive competition and its influence on community's functional diversity. Here I propose a brief appraisal of empirical evidence for intransitive competition in nature, and an overview of the current understanding of this mechanism and its properties. I then demonstrate with a theoretical model that intransitive competitive interactions can actually generate random‐like functional diversity patterns. The variety of diversity patterns (overdispersion, clustering, randomness) that can emerge from diverse types of competitive interactions makes it difficult to identify the presence of competition in nature, potentially leading to an underestimation of its importance as a structuring force. New methodologies able to capture both simple and complex competition mechanisms are thus urgently needed.  相似文献   

12.
Cryptic species are morphologically identical but genetically distinct, and are prominent across numerous phyla. The coexistence of such closely related species on local scales would seem to run counter to traditional coexistence and competition theory; it has been hypothesized as a consequence of differences in their resource use or tolerances to environmental conditions. We developed an individual-based model of a community of three cryptic Litoditis marina (nematode) species, to understand how individual-level interspecific and intraspecific interactions might explain the coexistence of these closely related species. The model incorporates individuals' reproduction, competition, dispersal and resource use. Data characterizing the cryptic species (growth rates, dispersal ability, competitive interactions and responses to changing environmental conditions) were obtained from laboratory experiments involving both mono- and multispecific nematode cultures, and are used to parameterize the model. Simulation studies are used to investigate which individual-level mechanisms of dispersal and interaction lead to the characteristic population-level patterns observed experimentally. Our results highlight the key role of intraspecific competition in mediating dispersal and therefore co-occurrence of the cryptic species. The differences in dispersal also influence the response of the cryptic species to competition, a combination of factors that provides an explanation for their co-occurrence. These results provide insights into how changes in individual-level processes can be amplified to affect population-level co-occurrence.  相似文献   

13.
Patterns of phylogenetic relatedness within communities have been widely used to infer the importance of different ecological and evolutionary processes during community assembly, but little is known about the relative ability of community phylogenetics methods and null models to detect the signature of processes such as dispersal, competition and filtering under different models of trait evolution. Using a metacommunity simulation incorporating quantitative models of trait evolution and community assembly, I assessed the performance of different tests that have been used to measure community phylogenetic structure. All tests were sensitive to the relative phylogenetic signal in species metacommunity abundances and traits; methods that were most sensitive to the effects of niche-based processes on community structure were also more likely to find non-random patterns of community phylogenetic structure under dispersal assembly. When used with a null model that maintained species occurrence frequency in random communities, several metrics could detect niche-based assembly when there was strong phylogenetic signal in species traits, when multiple traits were involved in community assembly, and in the presence of environmental heterogeneity. Interpretations of the causes of community phylogenetic structure should be modified to account for the influence of dispersal.  相似文献   

14.
Density-dependent dispersal in host-parasitoid assemblages   总被引:2,自引:0,他引:2  
Most spatial population models assume constant rates of dispersal. However, in a given community, dispersal may not only depend on the density of conspecifics, i.e. density‐dependent dispersal, but also on the density of other species, a phenomenon we term ‘community‐dependent dispersal’. We co‐vary the densities of both the beetle host Callosobruchus chinensis and its parasitoid wasp, Anisopteromalus calandrae, in a laboratory study and record the proportions of each species that disperse within a two‐hour period. The parasitoid in these systems exhibits community‐dependent dispersal – dispersing more frequently when parasitoid density is high and larval host density is low. This supported our prediction that individuals should disperse according to competition for available resources. However, in this study the host's dispersal was independent of density. We suggest that this may be due to less intense selection acting on host dispersal strategies than on the parasitoid. We consider some possible consequences of community‐dependent dispersal for a number of spatial population processes. A well‐known host‐parasitoid metapopulation model is expanded so that it includes a greater range of dispersal functions. When the model is parameterised with the parasitoid community‐dependent dispersal function observed in the empirical study, similar population dynamics are obtained as when fixed‐rate dispersal functions are applied. The importance of dispersal functions for invasions of both competitive and host‐parasitoid systems is also considered. The model results demonstrate that understanding how individuals disperse in response to different species’ population densities is important in determining the rate of spread of an invasion. We suggest that more empirical studies are needed to establish what determines dispersal rate and distance in a range of species, combined with theoretical studies investigating the role of the dispersal function in determining spatial population processes.  相似文献   

15.
Aim The diversity–productivity relationship is a controversial issue in ecology. Diversity is sometimes seen to increase with productivity but a unimodal relationship has often been reported. Competitive exclusion was cited initially to account for the decrease of diversity at high productivity. Subsequently, the roles of evolutionary history (species pool size) and dispersal rate have been acknowledged. We explore how the effects of species pool, dispersal and competition combine to produce different diversity–productivity relationships. Methods We use a series of simulations with a spatially explicit, individual‐based model. Following empirical expectations, we used four scenarios to characterize species pool size along the productivity gradient (uniformly low and high, linear increase and unimodal). Similarly, the dispersal rate varied along the productivity gradient (uniformly low and high, and unimodal). We considered both neutral communities and communities with competitive exclusion. Results and main conclusions Our model predicts that competitive interactions will result in unimodal diversity–productivity relationships. The model often predicts unimodal patterns in neutral communities as well, although the decline in richness at high productivity is less than in competing communities. A positive diversity–productivity relationship is simulated for neutral communities when the species pool size increases with productivity and the dispersal rate is high. This scenario is probably more widespread in nature than the others since positive diversity–productivity relationships have been observed more frequently than previously expected, especially in the tropics and for woody species. Our simulated effects of species pool, dispersal and competition on diversity patterns can be linked to empirical observations to uncover mechanisms behind the diversity–productivity relationship.  相似文献   

16.
The composition of communities of sessile organisms, and the change in species diversity with time, is a spatially explicit phenomenon. Three spatial factors clearly affect diversity: (1) the structure and heterogeneity of the landscape that limits species immigration and ultimate community size; (2) neighborhood interactions that determine colonization and extinction rates and influence residence times of local populations; and (3) disturbances that open spatially contiguous areas for recolonization by less abundant species. The importance of these three factors was first reviewed and then examined with a spatially explicit, multi-species model of plant dispersal, competition and establishment, with an assumption of neutrality (all species had equivalent life histories) that reduced the initial dimensionality of the problem. The simulations assumed that the probability of immigration was a linear function of mainland abundance and distance to islands, similar to the equilibrium theory of island biogeography and the unified neutral theory of biodiversity. The rate of increase in species richness was not constant across island sizes, declining as island area became very large. This pattern was explained by the spatial dynamics of colonization and establishment, a non-random process that cannot be explained by passive sampling alone. Simulations showed that population establishment depended critically on rare long-distance dispersal events while population persistence was achieved by the formation of aggregated species distributions that developed through restricted dispersal and local competitive interactions. Nevertheless, species richness always declined to a single species in the absence of disturbances, while up to 40 species could persist to 10,000 years when spatially dependent mortality was added. Further explorations with spatially explicit models will be required to fully appreciate the consequence of land use change and altered disturbance regimes on patterns of species distribution and the maintenance of diversity.  相似文献   

17.
Although the influence of dispersal on coexistence mechanisms in metacommunities has received great emphasis, few studies have addressed how such influence is affected varying regional heterogeneity. We present a mechanistic model of resource competition in a metacommunity based on classical models of plant competition for limiting resources. We defined regional heterogeneity as the differences in resource supply rates (or resource availabilities) across local communities. As suggested by previous work, the highest diversify occurred at intermediate levels of dispersal among local communities. However our model shows how the effects of dispersal depend on the amount of heterogeneity among local communities and vice versa. Both regional and local species richness were the highest when heterogeneity was intermediate. We suggest that empirical studies that found no evidence for source–sink or mass effects at the community level may have examined communities with limited ranges of dispersal and regional heterogeneity. This model of species coexistence contributes to a broader understanding of patterns in real communities.  相似文献   

18.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

19.
Abstract: Mechanisms proposed to explain the maintenance of species diversity within ecological communities of sessile organisms include niche differentiation mediated by competitive trade-offs, frequency dependence resulting from species-specific pests, recruitment limitation due to local dispersal, and a speciation-extinction dynamic equilibrium mediated by stochasticity (drift). While each of these processes, and more, have been shown to act in particular communities, much remains to be learned about their relative importance in shaping community-level patterns. We used a spatially-explicit, individual-based model to assess the effects of each of these processes on species richness, relative abundance, and spatial patterns such as the species-area curve. Our model communities had an order-of-magnitude more individuals than any previous such study, and we also developed a finite-size scaling analysis to infer the large-scale properties of these systems in order to establish the generality of our conclusions across system sizes. As expected, each mechanism can promote diversity. We found some qualitative differences in community patterns across communities in which different combinations of these mechanisms operate. Species-area curves follow a power law with short-range dispersal and a logarithmic law with global dispersal. Relative-abundance distributions are more even for systems with competitive differences and trade-offs than for those in which all species are competitively equivalent, and they are most even when frequency dependence (even if weak) is present. Overall, however, communities in which different processes operated showed surprisingly similar patterns, which suggests that the form of community-level patterns cannot in general be used to distinguish among mechanisms maintaining diversity there. Nevertheless, parameterization of models such as these from field data on the strengths of the different mechanisms could yield insight into their relative roles in diversity maintenance in any given community.  相似文献   

20.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号