首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-dependent K+ channels control repolarization of action potentials and help establish firing patterns in nerve cells. To determine the nature and role of molecular components that modulate K+ channel function in vivo, we coinjected Xenopus oocytes with cRNA encoding a cloned subthreshold A-type K+ channel (mShal1, also referred to as mKv4.1) and a low molecular weight (LMW) fraction (2-4 kb) of poly(A)+ mRNA (both from rodent brain). Coinjected oocytes exhibited a significant (fourfold) increase in the surface expression of mShal1 K+ channels with no change in the open-channel conductance. Coexpression also modified the gating kinetics of mShal1 current in several respects. Macroscopic inactivation of whole oocyte currents was fitted with the sum of two exponential components. Both fast and slow time constants of inactivation were accelerated at all membrane potentials in coinjected oocytes (tau f = 47.2 ms vs 56.5 ms at 0 mV and tau s = 157 ms vs 225 ms at 0 mV), and the corresponding ratios of amplitude terms were shifted toward domination by the fast component (Af/As = 2.71 vs 1.17 at 0 mV). Macroscopic activation was characterized in terms of the time-to-peak current, and it was found to be more rapid at all membrane potentials in coinjected oocytes (9.9 ms vs 13.5 ms at 0 mV). Coexpression also leads to more rapid recovery from inactivation (approximately 2.4-fold faster at -100 mV). The coexpressed K+ currents in oocytes resemble currents expressed in mouse fibroblasts (NIH3T3) transfected only with mShal1 cDNA. These results indicate that mammalian regulatory subunits or enzymes encoded by LMW mRNA species, which are apparently missing or expressed at low levels in Xenopus oocytes, may modulate gating in some native subthreshold A-type K+ channels.  相似文献   

2.
K+ channels play diverse roles in mediating K+ transport and in modulating the membrane potential in higher plant cells during growth and development. Some of the diversity in K+ channel functions may arise from the regulated expression of multiple genes encoding different K+ channel polypeptides. Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous to the two previously identified K+ channel genes, KAT1 and AKT1. This cDNA mapped to the center of chromosome 4 by restriction fragment length polymorphism analysis and was highly expressed in leaves, whereas AKT1 was mainly expressed in roots. In addition, we show that diversity in K+ channel function may be attributable to differences in expression levels. Increasing KAT1 expression in Xenopus oocytes by polyadenylation of the KAT1 mRNA increased the current amplitude and led to higher levels of KAT1 protein, as assayed in western blots. The increase in KAT1 expression in oocytes produced shifts in the threshold potential for activation to more positive membrane potentials and decreased half-activation times. These results suggest that different levels of expression and tissue-specific expression of different K+ channel isoforms can contribute to the functional diversity of plant K+ channels. The identification of a highly expressed, leaf-specific K+ channel homolog in plants should allow further molecular characterization of K+ channel functions for physiological K+ transport processes in leaves.  相似文献   

3.
4.
5.
6.
Voltage-gated K+ channels play important roles in shaping the characteristics of action potentials and electrical activity. In a previous study, we isolated cDNAs encoding several distinct K+ channel isoforms, including a novel isoform (XKv1.10) expressed in Xenopus laevis spinal cord neurons and myocytes. Here, we report the biophysical characterization of XKv1.10 expressed in transiently transfected HEK293 cells. Whole cell patch clamp recordings revealed a voltage-gated, rapidly activating and inactivating K+ current. Interestingly, the rate of inactivation of XKv1.10 channels showed apparent voltage dependence, with time constants between 77.7-213.3 ms. The predicted protein sequence of XKv1.10 does not appear to encode an N-terminal inactivating "ball and chain" domain, and instead these channels may inactivate via a C/P-type mechanism. Consistent with this, either increasing the external concentration of K+ or external application of tetraethylammonium caused a decrease in the rate of inactivation. Pharmacologically, XKv1.10 K+ channels were sensitive to 4-aminopyridine and tetraethylammonium with apparent IC50 values of 68.5 microM and 17.1 mM, respectively. When simulated action potentials were used as a voltage command, XKv1.10 was similar to XKv1.4 in that it carried more repolarizing current during the action potential than XKv1.2. However, while XKv1.4 was active during the interspike interval, XKv1.10 and XKv1.2 were not. Overall, the data suggest that XKv1.10 channels make a unique contribution to the developmental maturation of electrical signaling in Xenopus laevis.  相似文献   

7.
8.
B Rudy  J H Hoger  H A Lester  N Davidson 《Neuron》1988,1(8):649-658
Fast transient K+ channels (A channels) of the type operating in the subthreshold region for Na+ action potential generation were expressed in Xenopus oocytes injected with rat brain poly(A) RNA. Sucrose gradient fractionation of the RNA separates mRNAs encoding A-currents (6-7 kb) from mRNAs encoding other voltage-dependent K+ channels. A-currents expressed with fractionated mRNA differ in kinetics and pharmacology from A-currents expressed with total mRNA. The original properties of the A-currents can be reconstituted when small mRNAs (2-4 kb) are added to the large mRNA fraction. Thus the properties of the A-currents expressed with total poly(A) RNA depend on the presence of more than one mRNA species. mRNA(s) present in the large RNA fraction must encode channel subunits since they express an A-current by themselves. The small mRNA(s) may encode a second subunit(s) or a factor, such as an enzymatic activity that modulates the properties of the channels, which could play a role in generating A-channel functional diversity.  相似文献   

9.
A full-length K+ channel cDNA (RHK1) was isolated from a rat cardiac library using the polymerase chain reaction (PCR) method and degenerate oligonucleotide primers derived from K+ channel sequences conserved between Drosophila Shaker H4 and mouse brain MBK1. Although RHK1 was isolated from heart, its expression was found in both heart and brain. The RHK1-encoded protein, when expressed in Xenopus oocytes, gated a 4-aminopyridine (4-AP)-sensitive transient outward current. This current is similar to the transient outward current measured in rat ventricular myocytes with respect to voltage-dependence of activation and inactivation, time course of activation and inactivation, and pharmacology.  相似文献   

10.
The cytoplasmic injection of mRNA synthesized in vitro into Xenopus oocytes is widely used for heterologous expression of ion channels and neurotransmitter receptors. We report two new methods for expression of ion channels and receptors in oocytes using vaccinia virus (VV). 1) A recombinant VV carrying the Shaker H4 K+ channel cDNA driven by the VV P7.5 early promoter was injected into oocytes. 2) A recombinant VV containing the bacteriophage T7 RNA polymerase driven by the P7.5 promoter was coinjected along with plasmids containing a T7 promoter and cDNAs for channels and receptors. The functionally expressed proteins include a) voltage-gated ion channels: the Shaker H4 K+ channel and the rat brain IIA Na+ channel, b) a ligand-gated ion channel: the mouse muscle nicotinic acetylcholine receptor (AChR), and c) a G protein-coupled receptor: the rat brain 5HT1C receptor. After virus/cDNA injection into oocytes, these channels and receptors generally showed characteristics and expression levels similar to those observed in mRNA-injected oocytes. However, the AChR expressed at lower levels in virus/cDNA-injected oocytes than in mRNA-injected oocytes. Because our methods bypass mRNA synthesis, they are more rapid and convenient than the mRNA injection method. Potential applications to structure-function studies and expression cloning are discussed.  相似文献   

11.
Using a cDNA library prepared from circumvallate papillae of rat tongue, we have identified, cloned, and sequenced a novel K+ channel, designated cdrk. The cdrk channel appears to be a member of the Shab subfamily, most closely resembling drk1. Electrophysiologic analysis of expressed cdrk channels reveals delayed rectifier properties similar to those of drk1 channels. Localizations of cdrk mRNA in rat brain and peripheral tissues, assessed by in situ hybridization and Northern blot analysis, differ from any other reported K+ channels. In the brain cdrk mRNA is most concentrated in granule cells of the olfactory bulb and cerebellum. In peripheral tissues, mRNAs for cdrk and drk1 are reciprocally localized, indicating that the K+ channel properties contributed by mammalian Shab homologs may be important in a variety of excitable tissues.  相似文献   

12.
We have isolated and characterized a human cDNA (HBK2) that is homologous to novel member (RCK2) of the K+ channel RCK gene family expressed in rat brain. RCK2 mRNA was detected predominantly in midbrain areas and brainstem. The primary sequences of the HBK2/RCK2 K+ channel proteins exhibit major differences to other members of the RCK gene family. The bend region between segments S1 and S2 is unusually long and does not contain the N-glycosylation site commonly found in this region. They might be O-glycosylated instead. Functional characterization of the HBK2/RCK2 K+ channels in Xenopus laevis oocytes following micro-injection in in vitro transcribed HBK2 or RCK2 cRNA showed that the HBK2/RCK2 proteins form voltage-gated K+ channels with novel functional and pharmacological properties. These channels are different to RCK1, RCK3, RCK4 and RCK5 K+ channels.  相似文献   

13.
14.
While studying the adult rat skeletal muscle Na+ channel outer vestibule, we found that certain mutations of the lysine residue in the domain III P region at amino acid position 1237 of the alpha subunit, which is essential for the Na+ selectivity of the channel, produced substantial changes in the inactivation process. When skeletal muscle alpha subunits (micro1) with K1237 mutated to either serine (K1237S) or glutamic acid (K1237E) were expressed in Xenopus oocytes and depolarized for several minutes, the channels entered a state of inactivation from which recovery was very slow, i.e., the time constants of entry into and exit from this state were in the order of approximately 100 s. We refer to this process as "ultra-slow inactivation". By contrast, wild-type channels and channels with the charge-preserving mutation K1237R largely recovered within approximately 60 s, with only 20-30% of the current showing ultra-slow recovery. Coexpression of the rat brain beta1 subunit along with the K1237E alpha subunit tended to accelerate the faster components of recovery from inactivation, as has been reported previously of native channels, but had no effect on the mutation-induced ultra-slow inactivation. This implied that ultra-slow inactivation was a distinct process different from normal inactivation. Binding to the pore of a partially blocking peptide reduced the number of channels entering the ultra-slow inactivation state, possibly by interference with a structural rearrangement of the outer vestibule. Thus, ultra-slow inactivation, favored by charge-altering mutations at site 1237 in micro1 Na+ channels, may be analogous to C-type inactivation in Shaker K+ channels.  相似文献   

15.
A cloned human voltage-sensitive K+ channel HLK3 which is present in T-lymphocytes and in the brain was expressed in Xenopus oocytes and after permanent transfection of a human B-lymphocyte cell line (IM9). Injections of low cRNA concentrations into Xenopus oocytes led to the expression of a transient K+ current, with saturating current-voltage (I-V) relationship, which was abolished by repetitive stimulations due to a slow recovery from inactivation. This transient K+ channel current was fully inhibited by 10 nM charybdotoxin. Injection of high concentrations of the same RNA led to a non-inactivating K+ current, with linear I-V curve, which did not undergo use-dependent inactivation and was hardly sensitive to 10 nM charybdotoxin. Intermediate behaviour due to changing proportions of these two types of K+ channel expression were observed at intermediate RNA concentrations. Transient and non-inactivating K+ currents were also observed by both whole-cell and single channel patch-clamp recording from HLK3 transfected IM9 cells. The main conductance of the channel in the two different modes (inactivating and charybdotoxin-sensitive or non-inactivating and charybdotoxin-resistant) is the same (12-14 pS). Destruction of the cytoskeletal elements with cytochalasin D, colchicine or botulinum C2 toxin in oocyte experiments prevented expression of the sustained mode of the K+ channel. The results suggest that the sustained mode obtained at high RNA concentrations corresponds to channel clustering involving cytoskeletal elements. This differential functional expression of K+ channels associated with different levels of mRNA appears as a new important factor to explain the biophysical and pharmacological diversity of voltage-sensitive K+ channels.  相似文献   

16.
A Baumann  S Frings  M Godde  R Seifert    U B Kaupp 《The EMBO journal》1994,13(21):5040-5050
Cyclic nucleotide-gated (CNG) ion channels serve as downstream targets of signalling pathways in vertebrate photoreceptors and olfactory sensory neurons. Whether CNG channels subserve similar functions in invertebrate photoreception and olfaction is unknown. We have cloned genomic DNA and cDNA encoding a cGMP-gated channel from Drosophila. The gene contains at least seven exons. Heterologous expression of cloned cDNA in both Xenopus oocytes and HEK 293 cells gives rise to functional ion channels. The Drosophila CNG channel is approximately 50-fold more sensitive to cGMP than to cAMP. The voltage dependence of blockage by divalent cations is different compared with the CNG channel of rod photoreceptors, and the Ca2+ permeability is much larger. The channel mRNA is expressed in antennae and the visual system of Drosophila. It is proposed that CNG channels are involved in transduction cascades of both invertebrate photoreceptors and olfactory sensillae.  相似文献   

17.
We have cloned a cDNA coding for a delayed rectifier K+ channel from rat brain (RCK1) and rat muscle (RMK1) and expressed it in Xenopus oocytes and in a myoblast cell line (Sol-8). Stably transfected Sol-8 cells exhibited large outward K+ currents, which were indistinguishable from the K+ currents induced in Xenopus oocytes by injection of mRNA transcribed in vitro. RCK1 encodes a K+ channel with a unitary conductance of approximately 14 pS. The steep voltage dependence of channel opening resides in transitions between closed states, whereas the direct transitions into and out of the open state are very rapid and not markedly voltage-dependent. Channel inactivation is very slow, voltage-independent, and occurs from the open state only. We present a simple model that incorporates our findings and is consistent with the presumed structural symmetry of a functional K+ channel.  相似文献   

18.
A cDNA encoding a novel voltage-gated K(+) channel protein was isolated from human brain. This protein, termed BEC1, is 46% identical to rat elk in the ether-à-go-go K(+) channel family. The BEC1 gene maps to the 12q13 region of the human genome. Northern blot analysis indicates that BEC1 is exclusively expressed in human brain, where the expression is concentrated in the telencephalic areas such as the cerebral cortex, amygdala, hippocampus, and striatum. By in situ hybridization, BEC1 is detected in the CA1-CA3 pyramidal cell layers and the dentate gyrus granule cell layers of the hippocampus. Specific signals are also found in neocortical neurons. Transfection of mammalian L929 and Chinese hamster ovary cells with BEC1 cDNA induces a voltage-gated outward current with a fast inactivation component. This current is insensitive to tetraethylammonium and quinidine. Additionally, a second related gene BEC2 was isolated from human brain. BEC2 is also brain-specific, located in the neocortex and the striatum, and functional as a channel gene. Phylogenetic analysis indicates that BEC1 and BEC2 constitute a subfamily, together with elk, in the ether-à-go-go family. The two genes may be involved in cellular excitability of restricted neurons in the human central nervous system.  相似文献   

19.
Ca2(+)-activated K+ channels are present in muscle, nerve, pancreas, macrophages, and renal cells. They are important in such diverse functions as neurotransmitter release, muscle excitability, pancreatic secretion, and cell volume regulation. Although much is known about the biophysics of Ca2(+)-activated K+ channels, the molecular structure, cDNA and amino acid sequences are unknown. We injected size-fractionated mRNA isolated from cultured rabbit kidney medullary thick ascending limb cells in Xenopus oocytes and observed newly expressed K+ currents using two-microelectrode voltage-clamp technique. The expressed K+ currents are Ca2+ dependent and inhibited by charybdotoxin, a specific blocker of Ca2(+)-activated K+ channels. Amplitudes of the current ranged from 30 nA to more than 1 microA at a membrane potential of +30 mV. Reversal potential of the current suggested a K(+)-selective channel. The peak activity of Ca2(+)-activated K+ channels were observed in fractions corresponding to a message RNA with size of approximately 4.5 kilobases.  相似文献   

20.
We report transient expression of a full-length cDNA encoding the Ca2+ release channel of rabbit skeletal muscle sarcoplasmic reticulum (ryanodine receptor) in HEK-293 cells. The single-channel properties of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate-solubilized and sucrose gradient-purified recombinant Ca2+ release channels were investigated by using single-channel recordings in planar lipid bilayers. The recombinant Ca2+ release channel exhibited a K+ conductance of 780 pS when symmetrical 250 mM KCl was used as the conducting ion and a Ca2+ conductance of 116 pS in 50 mM luminal Ca2+. Opening events of the recombinant channels were brief, with an open time constant of approximately 0.22 ms. The recombinant Ca2+ release channel was more permeable to Ca2+ than to K+, with a pCa2+/pK+ ratio of 6.8. The response of the recombinant Ca2+ release channel to various concentrations of Ca2+ was biphasic, with the channel being activated by micromolar Ca2+ and inhibited by millimolar Ca2+. The recombinant channels were activated by ATP and caffeine, inhibited by Mg2+ and ruthenium red, and modified by ryanodine. Most recombinant channels were asymmetrically blocked, conducting current unidirectionally from the luminal to the cytoplasmic side of the channel. These data demonstrate that the properties of recombinant Ca2+ release channel expressed in HEK-293 cells are very similar, if not identical, to those of the native channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号