首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phages HP1c1 and S2 and a defective phage of Haemophilus influenzae have been compared. The morphology of the phages and the mol wt of their DNAs are similar, although the defective phage appears to have a different tail plate region. Electron microscope observation indicates that the defective phage does not attach to the cell surface, and its DNA appears to lack cohesive ends. The homology of the DNAs of the phages has been measured by hydridization. DNA from the defective phage shows little or no homology with the other phage DNAs. HP1c1 and S2 DNAs show a high level of homology. Each of these phages can form plaques on lawns of the lysogen of the other phage but at reduced plating efficiencies, suggesting that the two phages have related but not identical immunity systems.  相似文献   

2.
Physical maps constructed by the localization of the cleavage site of several restriction endonucleases have shown that the genomes of the Haemophilus bacteriophages S2 and HP1c1 exist in variant forms which differ in the molecular organization of the genomes. At least three regions of different organization of the bacteriophage chromosomes have been identified. The different types of molecular organization can be detected both in the DNA isolated from the mature phage particles and after integration of the phage DNA into the bacterial chromosome.  相似文献   

3.
The resolution of high molecular weight DNA fragments by field-inversion gel electrophoresis (FIGE) demonstrate the presence of two phage (S2 and HP1c1) integration sites (attB) in the Haemophilus influenzae Rd chromosome. In a population of wild-type cells either prophage site appears to be occupied in a single cell by one to at least three, tandemly repeated, amplified phage DNA molecules. The attL of the second bacterial attachment site present in the host SmaI fragment 7 and the leftmost part of phage S2 type B DNA of its genome organization (Piekarowicz et. al., 1986) have been sequenced. A comparison of the two bacterial att sites demonstrated that their homology is limited to the core region. A comparison of the DNA sequences of phage S2 type B and HP1c1 type C revealed a 530-bp insertion in the HP1c1 type C (not present in S2 type B) in addition to DNA variants due mostly to single-base mismatches. We postulate that phage S2 and HP1c1 genome variants (A, B, and C) evolved from a single phage origin and might stem from passage history arisen through accumulation of mutations.  相似文献   

4.
We have sequenced and characterized two R-plasmid-dependent single-stranded RNA bacteriophages (RPD ssRNA phages), C-1 and Hagl1. Phage C-1 requires a conjugative plasmid of the IncC group, while Hgal1 requires the IncH group. Both the adsorption rate constants and one-step growth curves are determined for both phages. We also empirically confirmed the lysis function of the predicted lysis genes. Genomic sequencing and phylogenetic analyses showed that both phages belong to the Levivirus group and are most closely related to another IncP-plasmid-dependent ssRNA phage, PRR1. Furthermore, our result strongly suggests that the stereotypical bauplans of genome organization found in Levivirus and Allolevivirus predate phage specialization for conjugative plasmids, suggesting that the utilization of conjugative plasmids for cell attachment and entry comprises independent evolutionary events for these two main clades of ssRNA phages. Our result is also consistent with findings of a previous study, making the Levivirus-like genome organization ancestral and the Allolevivirus-like genome derived. To obtain a deeper insight into the evolution of ssRNA phages, more phages specializing for various conjugative plasmids and infecting different bacterial species would be needed.  相似文献   

5.
Temperate bacteriophages effect chromosomal evolution of their bacterial hosts, mediating rearrangements and the acquisition of novel genes from other taxa. Although the Haemophilus influenzae genome shows evidence of past phage-mediated lateral transfer, the phages presumed responsible have not been identified. To date, six different H. influenzae phages are known; of these, only the HP1/S2 group, which lyosogenizes exclusively Rd strains (which were originally encapsulated serotype d), is well characterized. Phages in this group are genetically very similar, with a highly conserved set of genes. Because the majority of H. influenzae strains are nonencapsulated (nontypeable), it is important to characterize phages infecting this larger, genetically more diverse group of respiratory pathogens. We have identified and sequenced HP2, a bacteriophage of nontypeable H. influenzae. Although related to the fully sequenced HP1 (and even more so to the partially sequenced S2) and similar in genetic organization, HP2 has a few novel genes and differs in host range; HP2 will not infect or lysogenize Rd strains. Genomic comparisons between HP1/S2 and HP2 suggest recent divergence, with new genes completely replacing old ones at certain loci. Sequence comparisons suggest that H. influenzae phages evolve by recombinational exchange of genes with each other, with cryptic prophages, and with the host chromosome.  相似文献   

6.
Morphology of the Bacteriophages of Lactic Streptococci   总被引:13,自引:11,他引:2       下载免费PDF全文
Electron microscope studies have been made of a number of phages of lactic streptococci, seven of which were phages of Streptococcus lactis C10. Two of the phages are thought to be identical; five have been classified by the method of Tikhonenko as belonging to group IV (phages with noncontractile tails) with type III tail plates; one belongs to group V (phages with tails possessing a contractile sheath). Both prolate polyhedral heads and isometric polyhedral heads are represented among the group IV phages. The phage drc3 of S. diacetilactis DRC3 has been shown to have similar structure to the group IV phages of S. lactis C10 with prolate polyhedral heads. The phages ml1, hp, c11, and z8 of the S. cremoris strains ML1, HP, C11, and Z8, respectively, were shown to belong to the group IV phages with type III tail plates by the method of Tikhonenko. All had octahedral heads and tended to be larger than most of the other phages studied.  相似文献   

7.
KSF-1phi, a novel filamentous phage of Vibrio cholerae, supports morphogenesis of the RS1 satellite phage by heterologous DNA packaging and facilitates horizontal gene transfer. We analyzed the genomic sequence, morphology, and receptor for KSF-1phi infection, as well as its phylogenetic relationships with other filamentous vibriophages. While strains carrying the mshA gene encoding mannose-sensitive hemagglutinin (MSHA) type IV pilus were susceptible to KSF-1phi infection, naturally occurring MSHA-negative strains and an mshA deletion mutant were resistant. Furthermore, d-mannose as well as a monoclonal antibody against MSHA inhibited infection of MSHA-positive strains by the phage, suggesting that MSHA is the receptor for KSF-1phi. The phage genome comprises 7,107 nucleotides, containing 14 open reading frames, 4 of which have predicted protein products homologous to those of other filamentous phages. Although the overall genetic organization of filamentous phages appears to be preserved in KSF-1phi, the genomic sequence of the phage does not have a high level of identity with that of other filamentous phages and reveals a highly mosaic structure. Separate phylogenetic analysis of genomic sequences encoding putative replication proteins, receptor-binding proteins, and Zot-like proteins of 10 different filamentous vibriophages showed different results, suggesting that the evolution of these phages involved extensive horizontal exchange of genetic material. Filamentous phages which use type IV pili as receptors were found to belong to different branches. While one of these branches is represented by CTXphi, which uses the toxin-coregulated pilus as its receptor, at least four evolutionarily diverged phages share a common receptor MSHA, and most of these phages mediate horizontal gene transfer. Since MSHA is present in a wide variety of V. cholerae strains and is presumed to express in the environment, diverse filamentous phages using this receptor are likely to contribute significantly to V. cholerae evolution.  相似文献   

8.
9.
10.
Actinophage phi C31 of Streptomyces coelicolor A3 (2) and two novel temperate actinophages phi C43 and phi C62 isolated from strains of blue actinomycetes group are homoimmune, serologically and functionally related. DNA molecules of phages phi C31, phi C43 and phi C62 have cohesive ends; sizes of DNAs of these phages and some mutants have been determined. The extent of homology between the DNAs of three phages is 93-96% as shown by heteroduplex analysis. The regions of non-homology are of a deletion-insertion type and of approximately 1500 base pairs in the length. Location of deletions in DNAs of mutant phages phi C31 vd and phi C31 c5 has been shown. Structural modifications in phage dnas have been found only to occur in the right part of molecules. Heteroduplex maps have been constructed for all phages studied.  相似文献   

11.
We have completely sequenced and annotated the genomes of several relatives of the bacteriophage T4, including three coliphages (RB43, RB49 and RB69), three Aeromonas salmonicida phages (44RR2.8t, 25 and 31) and one Aeromonas hydrophila phage (Aeh1). In addition, we have partially sequenced and annotated the T4-like genomes of coliphage RB16 (a close relative of RB43), A. salmonicida phage 65, Acinetobacter johnsonii phage 133 and Vibrio natriegens phage nt-1. Each of these phage genomes exhibited a unique sequence that distinguished it from its relatives, although there were examples of genomes that are very similar to each other. As a group the phages compared here diverge from one another by several criteria, including (a) host range, (b) genome size in the range between approximately 160 kb and approximately 250 kb, (c) content and genetic organization of their T4-like genes for DNA metabolism, (d) mutational drift of the predicted T4-like gene products and their regulatory sites and (e) content of open-reading frames that have no counterparts in T4 or other known organisms (novel ORFs). We have observed a number of DNA rearrangements of the T4 genome type, some exhibiting proximity to putative homing endonuclease genes. Also, we cite and discuss examples of sequence divergence in the predicted sites for protein-protein and protein-nucleic acid interactions of homologues of the T4 DNA replication proteins, with emphasis on the diversity in sequence, molecular form and regulation of the phage-encoded DNA polymerase, gp43. Five of the sequenced phage genomes are predicted to encode split forms of this polymerase. Our studies suggest that the modular construction and plasticity of the T4 genome type and several of its replication proteins may offer resilience to mutation, including DNA rearrangements, and facilitate the adaptation of T4-like phages to different bacterial hosts in nature.  相似文献   

12.
13.
14.
S. typhimurium strains isolated in 14 regions of the USSR have, parallel with considerable similarity in their biological characteristics, a number of essential differences. These differences become manifest in the determination of the plasmid spectra of the above organisms. The transfer of R-plasmid PLE518 F1 me fin+ with a molecular weight of 96 Md to strains, sensitive to the action of typing bacteriophages, renders these strains resistant to the lytic action of a number of phages, which leads to the conversion of their phage type. In some cases it may deteriorate the validity of the method of phage typing, used for epidemiological purposes.  相似文献   

15.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

16.
A mozzarella cheese factory using an undefined, milk-derived Streptococcus thermophilus starter system was monitored longitudinally for 2 years to determine whether the diversity of the resident bacteriophage population arose from environmental sources or from genetic changes in the resident phage in the factory. The two hypotheses led to different predictions about the genetic diversity of the phages. With respect to host range, 12 distinct phage types were observed. With two exceptions, phages belonging to different lytic groups showed clearly distinct restriction patterns and multiple isolates of phages showing the same host range exhibited identical or highly related restriction patterns. Sequencing studies in a conserved region of the phage genome revealed no point mutations in multiple isolates of the same phage type, while up to 12% nucleotide sequence diversity was observed between the different phage types. This diversity is as large as that between the most different sequences from phages in our collection. These observations make unlikely a model that postulates a single phage invasion event and diversification of the phage during its residence in the factory. In the second stage of our factory study, a defined starter system was introduced that could not propagate the resident factory phage population. Within a week, three new phage types were observed in the factory while the resident phage population was decreased but not eliminated. Raw milk was the most likely source of these new phages, as phages with identical host ranges and restriction patterns were isolated from raw milk delivered to the factory during the intervention trial. Apparently, all of the genetic diversity observed in the S. thermophilus phages isolated during our survey was already created in their natural environment. A better understanding of the raw-milk ecology of S. thermophilus phages is thus essential for successful practical phage control.  相似文献   

17.
Bacteriophage K1F specifically infects Escherichia coli strains that produce the K1 polysaccharide capsule. Like several other K1 capsule-specific phages, K1F encodes an endo-neuraminidase (endosialidase) that is part of the tail structure which allows the phage to recognize and degrade the polysaccharide capsule. The complete nucleotide sequence of the K1F genome reveals that it is closely related to bacteriophage T7 in both genome organization and sequence similarity. The most striking difference between the two phages is that K1F encodes the endosialidase in the analogous position to the T7 tail fiber gene. This is in contrast with bacteriophage K1-5, another K1-specific phage, which encodes a very similar endosialidase which is part of a tail gene "module" at the end of the phage genome. It appears that diverse phages have acquired endosialidase genes by horizontal gene transfer and that these genes or gene products have adapted to different genome and virion architectures.  相似文献   

18.
Genetics of bacteriophage phi 80--a review   总被引:4,自引:0,他引:4  
V N Rybchin 《Gene》1984,27(1):3-11
The genetic maps of bacteriophage lambda and lambdoid phage phi 80 are compared. The gene organization of phi 80 is very similar to that of lambda, as shown by isolation and characterization of many am, ts and c (clear) mutants of the phage. In general, the essential genes located in the same position on the genetic map of the phages lambda and phi 80 fulfill the same functions. These include the gene clusters coding for the head and tail proteins, genes for DNA synthesis, and the genes controlling lysogeny and late gene expression. The specific regulatory features of phi 80 in relation to the N function of lambda are discussed, but they require further clarification. The two phages differ in immunity specificity, host range, conversion property and temperature sensitivity.  相似文献   

19.
On the basis of HindIII-restriction digest analysis of genomic DNAs, the S. aureus bacteriophages of the International Typing Set were divided into five clusters designated as A, F, Ba, Bb, and Bc. The clusters A and F include all the phages of serogroups A and F and correspond to species 3A and 77 proposed by Ackermann and DuBow (1987). On the other hand, the phages of serogroup B were divided into three clusters designated as Ba, Bb, and Bc that differ significantly each from the other in their restriction patterns. The clusters Ba and Bb may represent two separate species, while the cluster Bc may include more than one phage species. For each of the phage serogroups A, B, and F, common HindIII-restriction fragments of phage 3A (1700 bp), of 53 (4060 bp), and of 77 (8300 bp) were used for the preparation of probes specific to the phages of serogroups A, B, and F. These probes were very effective, making it possible to detect up to three different prophages in a given lysogenic strain at the same time. Restriction enzyme maps of phages 3A, 53, and 77, each representing a different serogroup, were constructed. The restriction maps of phage 3A and that of phage 77 are linear, whereas that of phage 53 is circular and exhibits a circular permutation. DNAs of the phages of serogroups A and F have cohesive ends. On each restriction map, the sites corresponding to specific probes are indicated. The size of intact genomic DNA of all phages estimated by PFGE varies within the range of 41.5-46.2 kb.  相似文献   

20.
More than 200 coagulase-positive strains of animal origin have been studied by means of Staphylococcus aureus typing phages, belonging to two international sets and intended for typing staphylococci isolated from large cattle and humans, and experimental "chicken" phage A 1591. Among S. aureus strains the cultures isolated from swine, cows, chickens, and belonging to biotypes B1, C1, B2, respectively, have been mostly (in 78.5-90.0% of cases) determined by phage typing. The strains belonging to one biotype have proved to be sensitive predominantly to the same phages. In this connection further differentiation of staphylococci within individual biotypes by means of the phages used in these experiments seems to be impracticable. S. intermedius strains have been found to be completely resistant to the above phages, which confirms that S. intermedius is rightly considered to be an independent species of coagulase-positive staphylococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号