首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

2.
The effects of tryptophan administration on neurochemical estimates of synthesis [5-hydroxytryptophan (5-HTP) accumulation following administration of a decarboxylase inhibitor], storage [5-hydroxytryptamine (5-HT) concentrations], and metabolism [5-hydroxyindoleacetic acid (5-HIAA) concentrations] of 5-HT in selected regions of the hypothalamus were determined using HPLC coupled to an electrochemical detector. Tryptophan methyl ester HCl (30-300 mg/kg i.p.) produced a dose-dependent increase in the rate of 5-HTP accumulation throughout the hypothalamus but had no effect on the rate of accumulation of 3,4-dihydroxyphenylalanine. Peak 5-HTP levels were attained by 30 min following administration of tryptophan (100 mg/kg i.p.) and were maintained for an additional 60 min. Tryptophan also produced concomitant dose-dependent increases in 5-HT and 5-HIAA concentrations in these same regions without changes in the 5-HIAA/5-HT ratio. These results indicate that exogenous tryptophan administration selectively increases the synthesis, storage, and metabolism of 5-HT in the hypothalamus without altering the synthesis of catecholamines. Inhibition of 5-HT uptake with chlorimipramine or fluoxetine produced modest (10-40%) reductions in 5-HIAA concentrations throughout the hypothalamus, revealing that only a minor portion of 5-HIAA is derived from released and recaptured 5-HT, whereas the major portion of this metabolite reflects intraneuronal metabolism of unreleased 5-HT. In both chlorimipramine- and fluoxetine-treated rats, 5-HIAA concentrations were significantly increased by tryptophan administration, indicating that the increase in synthesis of 5-HT following precursor loading is accompanied by an increase in the intraneuronal metabolism of 5-HT.  相似文献   

3.
This study investigated: (a) the effects of acute 17alpha-methyltestosterone (MT) or 17beta-estradiol (E(2)) administration on norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4, dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) contents in the hypothalamus, telencephalon and pituitary of previtellogenic female rainbow trout Oncorhynchus mykiss, and (b) the effects of chronic MT administration on the levels of these neurotransmitters in these brain regions in immature male rainbow trout. The acute administration of MT induced a significant decrease in pituitary levels of DOPAC as well as in the DOPAC/DA ratio. On the other hand, the acute administration of E(2) induced an increase in pituitary 5-HT levels as well as a decrease in the 5-HIAA/5-HT ratio. In a second experiment, 20 mg MT per kilogram body weight was implanted for 10, 20 or 40 days into sexually immature male rainbow trout. Implanted rainbow trout showed increased testosterone and decreased E(2) levels. In the pituitary, MT induced long-term decreases in NE, DA, DOPAC and 5-HT levels, as well as in the DOPAC/DA ratio. Hypothalamic and telencephalic DA, NE and 5-HT levels were not affected by MT implantation. However, 5-HIAA levels and the 5-HIAA/5-HT ratio were reduced by MT implantation in both brain regions. These results show that chronic treatment with MT exerts both long-term and region-specific effects on NE, DA, and 5-HT contents and metabolism, and thus that this androgen could inhibit pituitary catecholamine and 5-HT synthesis. A possible role for testosterone in the control of pituitary dopaminergic activity and gonadotropin II release is also discussed.  相似文献   

4.
Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) may play a role in the pathophysiology of autistic disorder. This study examines the whole blood concentrations of 5-HT and 5-hydroxy-indoleacetic acid (5-HIAA) in baseline conditions and during a challenge with L-5-OH-tryptophane (5-HTP; 4 mg/kg in non enteric-coated tablets), the precursor of 5-HT, in a study group of 18 male, post-pubertal, Caucasian autistic patients (age 13-19 y.; I.Q.>55) and 20 matched healthy volunteers. In baseline conditions, no significant differences in 5-HT or 5-HIAA levels could be found between autistic youngsters and normal controls. 5-HTP administration significantly increased the levels of 5-HT in autistic youngsters but not in normal controls. Following 5-HTP challenge the 5-HT levels were significantly higher in autistic patients than in healthy volunteers. After challenge with 5-HTP, no significant differences were found in the concentrations of 5-HIAA or the test substance between autistic youngsters and normal controls. Differences in the peripheral metabolism of 5-HT which may not be observed in baseline conditions but which became clear after loading with 5-HTP, suggest that an increased synthesis of 5-HT from its precursor 5-HTP might be a one factor responsible for differences in the serotonergic system between autistic post-pubertal youngsters and normal controls.  相似文献   

5.
6R-L-Erythro-tetrahydrobiopterin (6R-BH4), the natural isomer of tetrahydrobiopterin, was synthesized from 7,8-dihydrobiopterin using dihydrofolate reductase. The effects of intracerebroventricular injection of 6R-BH4 on the biosyntheses of neurotransmitter monoamines in the rat brain were investigated by measuring accumulation of 3,4-dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after the inhibition of aromatic L-amino acid decarboxylase by NSD 1015 and the contents of metabolites of dopamine (DA) and 5-hydroxytryptamine (5-HT). The formation of DOPA and 5-HTP increased after the injection, reached a maximum level at about 1 h, then leveled off and reached a plateau over 2 h up to 8 h. The formation of DOPA and 5-HTP increased dose-dependently in the whole brain after the injection of 6R-BH4, and reached a plateau when the dose was more than 300 micrograms/rat. The enhancement was 100 and 70% for DOPA and 5-HTP, respectively. The formation of DOPA and 5-HTP increased in four brain regions, but the degree of stimulation was different among the brain regions. The contents of DA and 5-HT metabolites increased after the injection of 6R-BH4 in all brain regions tested, especially in the diencephalon and brain stem. The contents of DA and 5-HT increased slightly after the injection of 6R-BH4. These results suggest that 6R-BH4 concentration may be submaximal within DA and 5-HT neurons, and that an increase in 6R-BH4 in the brain enhances the biosyntheses of DA and 5-HT.  相似文献   

6.
The present study was designed to investigate whether lungs can utilize 5-hydroxytryptophan (5-HTP), formed elsewhere and transported, for the synthesis of 5-hydroxytryptamine (5-HT). [14C]5-HTP uptake was 7.7 +/- 1.1 and 3.9 +/- 0.2% by rabbit and rat lungs, respectively, after 1 h of perfusion with 10 microM [14C]5-HTP. There was an increase in the lung uptake of [14C]5-HTP when the lungs were preperfused with 0.5 mM chlorphentermine (CP) and the uptake was low when the lungs were preperfused with 0.1 mM hydroxybenzylhydrazine dihydrochloride (HBH). The perfusate concentration of 5-hydroxyindole acetic acid (5-HIAA) increased significantly (3-4 micrograms/100 mL) during rabbit lung perfusion with 10 microM [14C]5-HTP and this did not change significantly when the lungs were preperfused with 0.5 mM CP. However, 5-HT increased with time in the perfusate. 5-HT, but not 5-HIAA, was detected in the perfusate and increased with time of perfusion when the rat lungs were perfused either with 10 microM 5-HTP or with 0.5 mM CP and 10 microM 5-HTP. However, no metabolites were detected in either the rabbit lung or rat lung perfusates when they were preperfused with 0.1 mM HBH. Lung contents of 5-HT and 5-HIAA were significantly higher in the rat lungs and only 5-HIAA increased in rabbit lungs after 1 h of perfusion with 10 microM 5-HTP. Preperfusion with 0.5 mM CP resulted in a greater increase in the 5-HT content of both rabbit and rat lungs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
—Alterations in whole-brain and hypothalamic levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine (NE), dopamine (DA) as well as the turnover rates of NE and DA of adult male rats were analysed fluorometrically at either 3 weeks or 6 weeks following castration. Significant increases were observed in whole-brain (minus hypothalamus) 5-HIAA levels and hypothalamic DA levels, fractional rate constants and utilization rates at the 3 but not the 6 week intervals. Elevated levels of 5-HT were observed at both time intervals while an increase in whole-brain DA was seen only at the 6 week interval. Whole brain NE turnover rates of castrated animals did not differ significantly from those of sham-castrate control animals at either test interval. However, a tendency toward increased hypothalamic NE turnover rates was seen in the castrated animals. These biochemical changes resulted in decreased NE/5-HT and DA/5-HT ratios for the castrate rats as compared to controls. The results are discussed in relation to emotional and aggressive behavior and are interpreted as being consistent with the hypothesis purporting an inhibitory role for 5-HT and excitatory role for NE and DA in sex-specific behavior patterns including aggression.  相似文献   

8.
Stenfors C  Ross SB 《Life sciences》2002,71(24):2867-2880
The effect of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine on synthesis and turnover of 5-hydroxytryptamine (5-HT) was studied in the mouse brain in vivo. The concentration of 5-hydroxytryptophan (5-HTP), 5-hydroxyindoleacetic acid (5-HIAA) and 5-HT was measured in hypothalamus, hippocampus and frontal cortex after inhibition of the aromatic amino acid decarboxylase activity with m-hydroxybenzylhydrazine (NSD 1015). Fluoxetine 6.9 mg/kg s.c. was injected once daily for three weeks. Three days after the final daily injection of fluoxetine 5-HT synthesis (5-HTP accumulation) and turnover (5-HIAA/5-HT ratio) were significantly enhanced compared with saline-treated mice. The 5-HIAA/5-HT ratio was already significantly elevated after 3 days of fluoxetine treatment and continued to increase during treatment for 2-3 weeks. The increase in 5-HIAA/5-HT ratio was considerably larger (150-200% of controls) than the increase in 5-HTP accumulation (110-120%), which reached significance only after 3 weeks of treatment. The increase in 5-HT synthesis may be secondary to that of the turnover. The 5-HIAA/5-HT ratio returned to control values after a 14 days washout period. Simultaneous treatment with the long-acting 5-HT(1B)-receptor antagonist, SB 224289 for 14 days counteracted the fluoxetine-induced increase in 5-HIAA/5-HT ratio that indicates involvement of 5-HT(1B) autoreceptors in the development of this increase. It is proposed that the fluoxetine-induced enhancement of 5-HT turnover was evoked by the long-lasting stimulation of 5-HT(1B) autoreceptors that resulted in an intraneuronal compensatory adaptation of the basal 5-HT release.  相似文献   

9.
The effects of 1-h exposure to hypercapnia (PaCO2, 90-110 MMHg) on cerebral indole amine metabolism were studied in rats by measurement of cerebral hemisphere contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), 5-HIAA content was increased after 1-h exposure to hypercapnia, whereas tryptophan, 5-HTP, and 5-HT remained unchanged from control. The accumulation of 5-HTP after decarboxylase inhibition with 3-hydroxybenzyl hydrazine was increased in hypercapnic rats and indicated an increased activity of tryptophan hydroxylase. During the 1-h exposure to hypercapnia there was increased accumulation of 5-HT after monoamine oxidase inhibition with pargyline and increased accumulation of 5-HIAA arter probenecid. The results indicate an increased synthesis and degradation of indole amines in acute hypercapnia.  相似文献   

10.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

11.
The effect of melatonin treatment on time-of-day variations in hypothalamic serotonin (5-HT) and dopamine (DA) turnover was studied in rats treated with Freund's complete adjuvant (FCA). Animals received s.c. injections of 30 æg of melatonin or vehicle 1 h before lights off for 11 days. On day 10 of treatment, FCA or its vehicle was s.c. injected, and 2 days later, the rats were killed at 6 different time intervals throughout a 24-hour cycle. Hypothalamic 5-HT, 5-hydroxyindole-3-acetic acid (5-HIAA), DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were measured by HPLC. 5-HT and DA turnover were estimated from the 5-HIAA/5-HT and DOPAC/DA ratios, respectively. In the anterior hypothalamus, time-of-day variation in 5-HT turnover was suppressed by FCA, an effect counteracted by melatonin treatment. Melatonin also prevented FCA effect on medial hypothalamic 5-HT turnover, while in the posterior hypothalamus, similar daily variations of 5-HT turnover were found in all experimental groups. As far as DA turnover, FCA or melatonin administration suppressed its daily variations in the anterior hypothalamus. Time-of-day variations in medial hypothalamic DA turnover were similar in all groups while only rats treated with melatonin and FCA or its vehicle exhibited significant daily changes of DA turnover in the posterior hypothalamus. Results indicate that melatonin treatment affects partly the 24-hour pattern of variation of hypothalamic 5-HT and DA turnover at an early phase of FCA arthritis in rats.  相似文献   

12.
Loeffler  D.A.  LeWitt  P.A.  Juneau  P.L.  Camp  D.M.  DeMaggio  A.J.  Havaich  M.K.  Milbury  P.E.  Matson  W.R. 《Neurochemical research》1998,23(12):1521-1525
Parkinson's disease (PD) is characterized by decreased striatal dopamine, but serotonin (5-HT) is also reduced. Because 5-HT decreases following a single levodopa injection, levodopa has been suggested to contribute to PD's serotonergic deficits. However, in a recent study, rat striatal serotonin levels were reported to increase following 15-day levodopa administration. To address this issue, we administered levodopa (50 mg/kg) to rabbits for 5 days, then measured serotonin, its precursors tryptophan and 5-hydroxytryptophan (5-HTP), and its major metabolite 5-hydroxyindole-acetic acid (5-HIAA) in striatum and CSF. Striatal serotonin and tryptophan were unchanged, while 5-HTP and 5-HIAA increased 4- and 7-fold, respectively. CSF 5-HTP and 5-HIAA were also significantly increased. In levodopa-treated animals, 5-HTP concentrations were moderately correlated (r = 0.679) between striatum and CSF, while weak correlations were present between striatal and CSF concentrations of both serotonin and 5-HIAA. These results suggest that repeated levodopa treatment increases striatal serotonin turnover without changing serotonin content. However, levodopa-induced alterations in striatal serotonin metabolism may not be accurately reflected by measurement of serotonin and 5-HIAA in CSF.  相似文献   

13.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

14.
Abstract— The effects of i.p. injections of SO mg/kg d,l-5-hydroxytryptophan (5-HTP) and saline alone on the in uitro release of endogenous serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were studied using preparations of axon terminals (P2 isolated from the telencephalon of rats. The level of 5-HT was 2-fold greater and the level of 5-HIAA was 5-fold greater in the P2 fraction isolated from rats given the d,l-5-HTP injection than from rats given saline injections. At 37°C the in vitro efflux of 5-HT and 5-HIAA from the P2 fractions of animals injected with 5-HTP 30min before killing was approx 3 times higher than the saline control group. The amount of 5-HT and 5-HIAA released at 37°C was 3–5 times higher than the amount released at 0°C for both the 5-HTP and saline injected rats. Increasing the concentration of potassium ions in the media to 55 mm significantly increased the release of 5-HT but not 5-HIAA in both groups of animals. The amount of 5-HT released by 55mm-K+ was about 2-fold higher from the P2 fraction isolated from rats given 5-HTP injections with respect to those given saline injections. The potassium stimulated release of 5-HT was calcium dependent. The data thus indicate that injection of 50 mg/kg d,l-5-HTP in rats can cause an increase in the level of 5-HT and 5-HIAA in a crude synaptosomal fraction and that as a result of this increase, there is a temperature dependent increased release of 5-HT and 5-HIAA under normal resting membrane conditions. There is also an increased release of 5-HT as a result of membrane depolarizing conditions induced by elevated potassium levels which is calcium dependent.  相似文献   

15.
In humans and other primates low cerebrospinal fluid (CSF) levels of the major serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been correlated to high aggressiveness. This finding forms the basis of the 5-HT deficiency hypothesis of aggression. Surprisingly, this correlation has not been confirmed in rodents so far, while manipulation studies aimed to investigate the link between 5-HT and aggressive behaviour are mostly carried out in rodents. In this study the relation between aggression and CSF monoamine and metabolite concentrations was investigated in male Wildtype Groningen rats. In sharp contrast to the hypothesis and our expectation, a clear positive correlation was found between the individual level of trait-like aggressiveness and CSF concentrations of 5-HT, 5-HIAA, norepinephrine (NE), dopamine (DA), and 3,4-dihydroxyphenylacetic acid (DOPAC). Shortly after the acute display of aggressive behaviour (as a state-like phenomenon), decreased 5-HT levels and an increase in 5-HIAA/5-HT ratio and NE concentrations were found. Surprisingly, pharmacological challenges known to influence 5-HT transmission and aggressive behaviour did not affect CSF 5-HT and 5-HIAA concentrations, only the NE level was increased. Lesioning 5-HT terminals by 5,7-dihydroxytryptamine (5,7-DHT) administration caused a decrease in CSF 5-HT and 5-HIAA, but without affecting aggressive behaviour. The observed positive correlation between CSF 5-HIAA and trait aggressiveness makes it questionable whether a direct extrapolation of neurobiological mechanisms of aggression between species is justified. Interpretation of CSF metabolite levels in terms of activity of neural substrates requires a far more detailed knowledge of the dynamics and kinetics of a neurotransmitter after its release.  相似文献   

16.
Abstract: This study examined the hypothesis that chronic ethanol consumption results in significant abnormalities in both the dopaminergic and the serotonergic system of aged rats. Levels of dopamine (DA), serotonin [5-hydroxytryptamine (5-HT)], 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindole-3-acetic acid (5-HIAA) were determined in brain areas of both the nigrostriatal and mesocorticolimbic DA systems in 5-, 14-, and 24-month-old male Fischer 344 rats. Aging was associated with a reduced concentration of DA in the striatum (ST), ventral tegmental area (VTA), and ventral pallidum (VP) and an increased concentration of 5-HIAA in the ST, globus pallidus, nucleus accumbens, frontal cortex, and VP. In addition, there was an increase in the 5-HIAA/5-HT ratio in all brain areas analyzed. Six weeks of ethanol consumption was accompanied by significant changes in mesocorticolimbic brain areas. In the VTA of 5-month-old ethanol-fed rats DA content was decreased to the levels found in aged rats, e.g., 24 months of age. Ethanol also significantly lowered 5-HT and 5-HIAA contents in the VTA and reduced DOPAC and 5-HIAA levels in the VP. In addition, ethanol blunted the normal age-related increase in 5-HIAA/5-HT ratio in the VTA, VP, and substantia nigra. It is interesting that although the age-related changes were found in both nigrostriatal and mesocorticolimbic brain areas, the ethanol-associated effects were found only in brain areas of the mesocorticolimbic system. The changes in DA and 5-HT function that accompany aging and ethanol consumption may contribute to the problems in motor function and ethanol abuse found in the aged.  相似文献   

17.
The biosynthesis and metabolism of 5-hydroxytryptamine (serotonin; 5-HT) in the cestode Hymenolepis diminuta was investigated by High Performance Liquid Chromatography (HPLC). Incubation of intact H. diminuta in [3H]tryptophan resulted in substantial radioactivity recovered in 5-HT, 5-hydroxytryptophan (5-HTP), and 5-hydroxyindoleacetic acid (5-HIAA). Furthermore, the tissue levels of 5-HT and 5-HTP, as determined by HPLC with electrochemical detection, were significantly depressed when the animals were deprived of tryptophan. On the other hand, the tissue levels of 5-HTP were significantly increased following incubation with the 5-HTP decarboxylase inhibitor m-hydroxybenzylhydrazine. The synthesis and metabolism of 5-HT are discussed in the light of 5-HT as a physiological transmitter in H. diminuta.  相似文献   

18.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

19.
Noradrenaline (NA), 3,4-dihydroxyphenylethylamine (dopamine, DA), 5-hydroxytryptamine (serotonin, 5-HT), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in 22 regions of postmortem brains from four histologically verified cases with Alzheimer-type dementia (ATD) and nine histologically normal controls. Compared with the controls, concentrations of 5-HT and 5-HIAA in the ATD brains were significantly reduced in nine regions (superior frontal gyrus, insula, cingulate gyrus, amygdala, putamen, medial and lateral segments of globus pallidus, substantia nigra, lateral nucleus of thalamus) and in eight regions (amygdala, substantia innominata, caudate, putamen, medial and lateral segments of globus pallidus, medial and lateral nuclei of thalamus), respectively. NA concentrations of the ATD brains were significantly reduced in six regions (cingulate gyrus, substantia innominata, putamen, hypothalamus, medial nucleus of thalamus, raphe area). In contrast, significant reductions of DA and HVA concentrations in the ATD brains were found only in putamen and amygdala, respectively. The 5-HIAA/5-HT ratio in the ATD brains decreased significantly in locus coeruleus, while the HVA/DA ratio increased significantly in putamen and medial segment of globus pallidus. These findings suggest that the serotonergic and noradrenergic systems are affected, while the dopaminergic system is relatively unaffected in ATD brains.  相似文献   

20.
The quantitative estimation of total dopamine (DA), noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in the whole brain tissue of normal Nile grass rat, Arvicanthis niloticus, gives and average of 631 +/- 12 ng DA/g, 366 +/- 12 ng NE/g, 617 +/- 15 ng 5-HT/g and 431 +/- 10 ng 5-HIAA/g fresh brain tissue. The effect of barbitone sodium and thiopental sodium on the total DA, NE, 5-HT and 5-HIAA content in the brain tissue of the Nile grass rat, Arvicanthis niloticus, was studied. The total DA, NE, 5-HT and 5-HIAA contents were determined 5 hr after i.p. injection of different doses of barbitone sodium (20, 40 and 80 mg/ml/100 g body wt) and thiopental sodium (5, 10 and 20 mg/ml/100 g body wt). The effect of different time intervals (1, 10, 30 min, 1, 2.5, 5, 8, 16, 24 and 48 hr) on the total brain DA, NE, 5-HT and 5-HIAA content was investigated after i.p. injection of 40 mg of barbitone sodium and 10 mg of thiopental sodium/ml/100 g body wt. Both barbitone sodium and thiopental sodium caused an increase in DA, NE and 5-HT content and a decrease in 5-HIAA content in the brain tissue of Arvicanthis niloticus. The increase in the whole brain contents of DA, NE and 5-HT after the administration of barbitone sodium and thiopental sodium may be due either to inhibition of transmitter release by an action at the monoamine nerve terminal or to effects causing a decrease in nerve impulse flow. On the other hand, the decrease in 5-HIAA may be due to the decrease in the turnover of 5-HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号