首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tropomyosin movements on thin filaments are thought to sterically regulate muscle contraction, but have not been visualized during active filament sliding. In addition, although 3-D visualization of myosin crossbridges has been possible in rigor, it has been difficult for thick filaments actively interacting with thin filaments. In the current study, using three-dimensional reconstruction of electron micrographs of interacting filaments, we have been able to resolve not only tropomyosin, but also the docking sites for weak and strongly bound crossbridges on thin filaments. In relaxing conditions, tropomyosin was observed on the outer domain of actin, and thin filament interactions with thick filaments were rare. In contracting conditions, tropomyosin had moved to the inner domain of actin, and extra density, reflecting weakly bound, cycling myosin heads, was also detected, on the extreme periphery of actin. In rigor conditions, tropomyosin had moved further on to the inner domain of actin, and strongly bound myosin heads were now observed over the junction of the inner and outer domains. We conclude (1) that tropomyosin movements consistent with the steric model of muscle contraction occur in interacting thick and thin filaments, (2) that myosin-induced movement of tropomyosin in activated filaments requires strongly bound crossbridges, and (3) that crossbridges are bound to the periphery of actin, at a site distinct from the strong myosin binding site, at an early stage of the crossbridge cycle.  相似文献   

2.
Electron microscopic studies have been carried out on human platelets in the clot retraction. In the early stage of clot formation, platelets send out filopodia, in which thin filaments run longitudinally. The thin filaments are often observed to attach to the cell membrane where fibrin strands bind from the extracellular surface. In the later stage of clot formation, thick filaments become observable, mainly in the cell body of the platelets. These thick filaments are arranged to form an ordered array, and thin filaments run parallel to them. The thin filaments often attach to the end of the thick filaments. However, thin filaments are not seen between the arrays of thick filaments. Similar structures are also observed in the cytoskeleton of the contracted platelet. These filaments closely resemble the purified myosin aggregates formed under low ionic strength. Thus, during clot retraction, both actin and myosin in platelets are reorganized into thin and thick filaments, respectively.  相似文献   

3.
Ordered arrays of thin filaments (65 A diameter) along with other apparently random arrangements of thin and thick filaments (100–200 A diameter) are observed in contracted guinea pig taenia coli rapidly fixed in glutaraldehyde. The thin-filament arrays vary from a few to more than 100 filaments in each array. The arrays are scattered among isolated thin and thick filaments. Some arrays are regular such as hexagonal; other arrays tend to be circular. However, few examples of rosettes with regular arrangements of thin filaments surrounding thick filaments are seen. Optical transforms of electron micrographs of thin-filament arrays give a nearest-neighbor spacing of the thin filaments in agreement with the "actin" filament spacing from x-ray diffraction experiments. Many thick filaments are closely associated with thin-filament arrays. Some thick filaments are hollow circles, although triangular shapes are also found. Thin-filament arrays and thick filaments extend into the cell for distances of at least a micron. Partially relaxed taenia coli shows thin-filament arrays but few thick filaments. The suggestion that thick filaments aggregate prior to contraction and disaggregate during relaxation is promoted by these observations. The results suggest that a sliding filament mechanism operates in smooth muscle as well as in striated muscle.  相似文献   

4.
LOCALIZATION OF MYOSIN FILAMENTS IN SMOOTH MUSCLE   总被引:11,自引:10,他引:1       下载免费PDF全文
Thick myosin filaments, in addition to actin filaments, were found in sections of glycerinated chicken gizzard smooth muscle when fixed at a pH below 6.6. The thick filaments were often grouped into bundles and run in the longitudinal axis of the smooth muscle cell. Each thick filament was surrounded by a number of thin filaments, giving the filament arrangement a rosette appearance in cross-section. The exact ratio of thick filaments to thin filaments could not be determined since most arrays were not so regular as those commonly found in striated muscle. Some rosettes had seven or eight thin filaments surrounding a single thick filament. Homogenates of smooth muscle of chicken gizzard also showed both thick and thin filaments when the isolation was carried out at a pH below 6.6, but only thin filaments were found at pH 7.4. No Z or M lines were observed in chicken gizzard muscle containing both thick and thin filaments. The lack of these organizing structures may allow smooth muscle myosin to disaggregate readily at pH 7.4.  相似文献   

5.
The polarity of thin filaments in relation to thick filaments in developing muscle cells in vitro was investigated. The majority of thin filaments exhibited the right polarity and spatial position similar to that seen in mature myofibrils. It appears that the interaction between thick and thin filaments exists in the initial phases of myofibrillogenesis. Cortical microfilaments are found to have their polarities arranged randomly.  相似文献   

6.
THE FILAMENT LATTICE OF COCKROACH THORACIC MUSCLE   总被引:3,自引:3,他引:0       下载免费PDF全文
The fine structure of the tergo-coxal muscle of the cockroach, Leucophaea maderae, has been studied with the electron microscope. This muscle differs from some other types of insect flight muscles inasmuch as the ratio of thin to thick filaments is 4 instead of the characteristic 3. The cockroach flight muscle also differs from the cockroach femoral muscle in thin to thick filament ratios and diameters and in lengths of thick filaments. A comparison of these latter three parameters in a number of vertebrate and invertebrate muscles suggests in general that the diameters and lengths of the thick filaments and thin to thick filament ratios are related.  相似文献   

7.
Purification of native myosin filaments from muscle   总被引:1,自引:0,他引:1       下载免费PDF全文
Analysis of the structure and function of native thick (myosin-containing) filaments of muscle has been hampered in the past by the difficulty of obtaining a pure preparation. We have developed a simple method for purifying native myosin filaments from muscle filament suspensions. The method involves severing thin (actin-containing) filaments into short segments using a Ca(2+)-insensitive fragment of gelsolin, followed by differential centrifugation to purify the thick filaments. By gel electrophoresis, the purified thick filaments show myosin heavy and light chains together with nonmyosin thick filament components. Contamination with actin is below 3.5%. Electron microscopy demonstrates intact thick filaments, with helical cross-bridge order preserved, and essentially complete removal of thin filaments. The method has been developed for striated muscles but can also be used in a modified form to remove contaminating thin filaments from native smooth muscle myofibrils. Such preparations should be useful for thick filament structural and biochemical studies.  相似文献   

8.
The structure of the femoral muscle of the cockroach, Leucophaea maderae, was investigated by light and electron microscopy. The several hundred fibers of either the extensor or flexor muscle are 20 to 40 µ in diameter in transverse sections and are subdivided into closely packed myofibrils. In glutaraldehyde-fixed and epoxy resin-embedded material of stretched fibers, the A band is about 4.5 µ long, the thin filaments are about 2.3 µ in length, the H zone and I band vary with the amount of stretch, and the M band is absent. The transverse sections of the filaments reveal in the area of a single overlap of thick and thin filaments an array of 10 to 12 thin filaments encircling each thick filament; whereas, in the area of double overlap in which the thin filaments interdigitate from opposite ends of the A band, the thin filaments show a twofold increase in number. The thick filament is approximately 205 to 185 A in diameter along most of its length, but at about 0.2 µ from the end it tapers to a point. Furthermore, some well oriented, very thin transverse sections show these filaments to have electron-transparent cores. The diameter of the thin filament is about 70 A. Transverse sections exhibit the sarcolemma invaginating clearly at regular intervals into the lateral regions of the A band. Three distinct types of mitochondria are associated with the muscle: an oval, an elongate, and a type with three processes. It is evident, in this muscle, that the sliding filament hypothesis is valid, and that perhaps the function of the extra thin filaments is to increase the tensile strength of the fiber and to create additional reactive sites between the thick and thin filaments. These sites are probably required for the functioning of the long sarcomeres.  相似文献   

9.
The long slender retinal cones of fishes shorten in the light and elongate in the dark. Light-induced cone shortening provides a useful model for stuying nonmuscle contraction because it is linear, slow, and repetitive. Cone cells contain both thin (actin) and thick (myosinlike) filaments oriented parallel to the axis of contraction. This study examines the polarities of the cone's thin filaments and the changes in filament distribution which accompany light-induced contraction, in an attempt to elucidate the structural basis for the cone's contractile process. The proximal half of the cone is fixed to its cellular neighbors in the outer nuclear layer while the distal half is free. Thus, all shortening takes place in a necklike region (the myoid) in the distal half of the cone which extends into the space between the neural retina and the pigmented retinal epithelium. Thin filaments are found throughout the length of the cone, whereas thick filaments occur predominantly in the proximal (axon) regions of both light- and dark-adapted cones. Thus, thick filaments are primarily localized outside the region where shortening takes place. Observations from myosin subfragment-1 binding studies suggest that the cone's thin filaments are organized into two opposing sets. In the distal half of the cone (including the myoid), virtually all filaments have proximally directed arrowheads. In the more proximal regions of the axon, many thin filaments have opposite polarity, their arrowheads being distally directed. Near the synaptic proximal end of the light-adapted (contracted) cone, filaments of opposite polarities occur in approximately equal numbers. Thus, in the cone axon there appear to be two overlapping sets of actin filaments whose opposite polarities correspond to the two actin halves of a muscle sarcomere. In elongated, dark-adapted cones, thick filaments are localized throughout the axon region of the cone. In light, thick filaments accumulate towards the proximal end of the cone. These observations are consistent with a "sliding hypothesis" for cone contraction, in which thick myosinlike filaments produce sliding interdigitation of the two sets of oppositely directed actin filaments in the proximal axon region. Thus, the myoid thin filaments would be essentially reeled into the axon region to produce shortening. The mechanism of re-elongation depends on microtubules, as discussed in the companion paper.  相似文献   

10.
Postmortem changes in the actin-myosin interaction were studied by determining the amount of thick and thin filaments dissociated by ATP. The amount of separated filaments was very small in myofibrils prepared from muscles in rigor, while it increased markedly during post-rigor storage of muscles. Electron microscopically, separated thick and thin filaments prepared from stored muscles were similar to freshly prepared ones and no signs of proteolytic degradation of either type of filament could be observed. A protein which was released from myofibrils (probably from Z discs) on Ca2+-treatment seemed to be most closely related to the post-rigor dissociation of thick filaments from thin filaments.  相似文献   

11.
The organization and fine structure of the muscles of the scolex of the cysticercoid of Hymenolepis microstoma are described. The contractile apparatus consists of thick (175–325 Å diameter × 1.4 μm) and thin (60–80 Å diameter × 1 μm) filaments. The thick filaments are occasionally attached to the thin filaments by cross bridges. The thin filaments are attached to the dense bodies or to a dense zone at the sarcolemma at muscle insertions. In contracted muscle the thick filaments appear as quasi-hexagonal arrays or in lines. Each thick filament is surrounded by an orbit of up to 12 thin filaments, which in turn may be shared by adjacent thick filaments. Thin filaments may be present in quasi-rectangular or hexagonal groupings indicating some low order degree of actin lattice. The fusiform dense bodies (1,500 Å × 900 Å), consisting of up to 25 discrete substructures, are distributed uniformly throughout the myofiber and/or attached to the sarcolemma at attachment plaques. The sarcoplasmic reticulum, consisting of a presumed anastomosing network of tubules is structurally connected to the sarcolemma by periodic deposits of electron opaque material. Sarcoplasmic extensions of the myofiber(s) contain the nucleus, Golgi complexes, rough endoplasmic reticulum, ribosomes, β-glycogen, mitochondria and membrane bound electron dense structures. Upon activation of the metacestode, groups of α-glycogen and enlargement of the rough endoplasmic reticulum were observed. Microtubules which were conspicuously absent from the sarcoplasm of the unactivated worms appeared adjacent to the myofibers in activated worms.  相似文献   

12.
Flightin is a 20-kD myofibrillar protein found in the stretch-activated flight muscles ofDrosophila melanogaster. Nine of the eleven isoelectric variants of flightin are generatedin vivo by multiple phosphorylations. The accumulation of these isoelectric variants is affected differently by mutations that eliminate thick filaments or thin filaments. Mutations in the myosin heavy-chain gene that prevent thick filament assembly block accumulation of all flightin variants except N1, the unphosphorylated precursor, which is present at much reduced levels. Mutations in the flight muscle-specific actin gene that block actin synthesis and prevent thin filament assembly disrupt the temporal regulation of flightin phosphorylation, resulting in premature phosphorylation and premature accumulation of flightin phosphovariants. Cellular fractionation of fibers that are devoid of thin filaments show that flightin remains associated with the thick filamentrich cytomatrix. These results suggest that flightin is a structural component of the thick filaments whose regulated phosphorylation is dependent upon the presence of thin filaments.This work was supported by National Science Foundation Grant IBN-9253045.  相似文献   

13.
SYNOPSIS. Electron microscopic studies are reported on glycerinatedskeletal and cardiac muscle of a benthic fish, Coryphaenoidesspecies. In white skeletal muscle, the sarcomeres have a restinglength of approximately 1.8 µ, with thick filaments 1.4µ and thin filaments 0.75 µ in length. These dimensionsare somewhat shorter than filament lengths of oilier vertebratemuscles, possibly due to the elfect of volume increase duringassembly of thick and thin filaments at high hydrostatic pressure.During ATP-induced contraction of Coryphaenoides muscle fromsarcomere lengths of 1.8 µ to 1.6 µ, there is acharacteristic interdigitation of thick and thin filaments,with decrease in I band length and no change in length of thickor thin filaments. However, in sarcomeres contracted to lengthsof 1.5 µ. to 1.2 µ, there is a slight shorteningof the A band, apparently due to shortening of thick filaments,that occurs despite the presence of residual I band in the samesarcomeres. There is no obvious crumpling or distortion of thickfilaments during contraction to sarcomere lengths as low as1.0 µ, but filament organization undergoes extensive disarrayat sarcomere lengths approaching 0.7 µ. Although effectsfrom heterogeneity of filament length cannot be excluded withcertainty, the present evidence does suggest that contractionot Coryphaenoides muscle from 1.6 µ to 1.0 µ sarcomerelengih is accompanied by shortening of thick filaments consequentto a structural change within the thick filament core.  相似文献   

14.
"Twitchin-actin linkage hypothesis" for the catch mechanism in molluscan smooth muscles postulates in vivo existence of twitchin links between thin and thick filaments that arise in a phosphorylation-dependent manner [N.S. Shelud'ko, G.G. Matusovskaya, T.V. Permyakova, O.S. Matusovsky, Arch. Biochem. Biophys. 432 (2004) 269-277]. In this paper, we proposed a scheme for a possible catch mechanism involving twitchin links and regulated thin filaments. The experimental evidence in support of the scheme is provided. It was found that twitchin can interact not only with mussel myosin and rabbit F-actin but also with the paramyosin core of thick filaments, myorod, mussel thin filaments, "natural" F-actin from mussel, and skeletal myosin from rabbit. No difference was revealed in binding of twitchin with mussel and rabbit myosin. The capability of twitchin to interact with all thick filament proteins suggests that putative twitchin links can be attached to any site of thick filaments. Addition of twitchin to a mixture of actin and paramyosin filaments, or to a mixture of Ca(2+)-regulated actin and myosin filaments under relaxing conditions caused in both cases similar changes in the optical properties of suspensions, indicating an interaction and aggregation of the filaments. The interaction of actin and myosin filaments in the presence of twitchin under relaxing conditions was not accompanied by an appreciable increase in the MgATPase activity. We suggest that in both cases aggregation of filaments was caused by formation of twitchin links between the filaments. We also demonstrate that native thin filaments from the catch muscle of the mussel Crenomytilus grayanus are Ca(2+)-regulated. Twitchin inhibits the ability of thin filaments to activate myosin MgATPase in the presence of Ca(2+). We suggest that twitchin inhibition of the actin-myosin interaction is due to twitchin-induced switching of the thin filaments to the inactive state.  相似文献   

15.
SEVERAL investigators have speculated that the basis for all cellular contractile activity resides in a common molecular mechanism involving an interaction between actin and myosin1–4. Thin filaments resembling the actin filaments of muscle have indeed been widely observed3–5 and the recent demonstrations of heavy meromyosin binding to thin filaments4–6 suggest that these ubiquitous filaments are, in fact, actin. Although muscle-like thick filaments have not been observed in non-muscle cells, myosin thick filaments have been reconstituted from blood platelet preparations1. To our knowledge, however, no one has presented evidence for the natural occurrence of ordered arrays of thick and thin filaments in non-muscle cells.  相似文献   

16.
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting that twitchin is the tether (Funabara, D., Osawa, R., Ueda, M., Kanoh, S., Hartshorne, D. J., and Watabe, S. (2009) J. Biol. Chem. 284, 18015-18020). Here we show that a region near the N terminus of twitchin also interacts with thick and thin filaments from Mytilus anterior byssus retractor muscles. Both a recombinant protein, including the D1 and DX phosphorylation sites with flanking 7th and 8th Ig domains, and a protein containing just the linker region bind to thin filaments with about a 1:1 mol ratio to actin and K(d) values of 1 and 15 μM, respectively. Both proteins show a decrease in binding when phosphorylated. The unphosphorylated proteins increase force in partially activated permeabilized muscles, suggesting that they are sufficient to tether thick and thin filaments. There are two sites of thin filament interaction in this region because both a 52-residue peptide surrounding the DX site and a 47-residue peptide surrounding the D1 site show phosphorylation-dependent binding to thin filaments. The peptides relax catch force, confirming the region's central role in the mechanism of catch. The multiple sites of thin filament interaction in the N terminus of twitchin in addition to those in the C terminus provide an especially secure and redundant mechanical link between thick and thin filaments in catch.  相似文献   

17.
Rhodnius prolixus, a South American insect, molts five times in its development to an adult after emerging from the egg. Each molting cycle is triggered with a blood-meal. The ventral intersegmental abdominal muscles of Rhodnius develop during each molting cycle and are functional at molting. The fine structure of these fully developed muscles from fourth stage larval insects is studied. They have the characteristic structure of slow muscles. They have multiple motor nerve endings, and the myofibrils are poorly defined in cross-section. Longitudinal sections show long sarcomeres (8–10 µ), irregular Z-lines, and no apparent H zones. No M line is seen. Transverse sections through the A-band region show that each hexagonally arranged thick filament is surrounded by 12 thin filaments. Two thin filaments are shared by two neighboring thick filaments. The ratio of thin to thick filaments is 6:1. This structure is related to that found in vertebrate skeletal muscle and insect flight muscle.  相似文献   

18.
The structure of the cross-striated adductor muscle of the scallop has been studied by electron microscopy and X-ray diffraction using living relaxed, glycerol-extracted (rigor), fixed and dried muscles. The thick filaments are arranged in a hexagonal lattice whose size varies with sarcomere length so as to maintain a constant lattice volume. In the overlap region there are approximately 12 thin filaments about each thick filament and these are arranged in a partially disordered lattice similar to that found in other invertebrate muscles, giving a thin-to-thick filament ratio in this region of 6:1.The thin filaments, which contain actin and tropomyosin, are about 1 μm long and the actin subunits are arranged on a helix of pitch 2 × 38.5 nm. The thick filaments, which contain myosin and paramyosin, are about 1.76 μm long and have a backbone diameter of about 21 nm. We propose that these filaments have a core of paramyosin about 6 nm in diameter, around which the myosin molecules pack. In living relaxed muscle, the projecting myosin heads are symmetrically arranged. The data are consistent with a six-stranded helix, each strand having a pitch of 290 nm. The projections along the strands each correspond to the heads of one or two myosin molecules and occur at alternating intervals of 13 and 16 nm. In rigor muscle these projections move away from the backbone and attach to the thin filaments.In both living and dried muscle, alternate planes of thick filaments are staggered longitudinally relative to each other by about 7.2 nm. This gives rise to a body-centred orthorhombic lattice with a unit cell twice the volume of the basic filament lattice.  相似文献   

19.
Fine structural characteristics of the cardiac muscle and its sarcomere organization in the black widow spider, Latrodectus mactans were examined using transmission electron microscopy. The arrangement of cardiac muscle fibers was quite similar to that of skeletal muscle fibers, but they branched off at the ends and formed multiple connections with adjacent cells. Each cell contained multiple myofibrils and an extensive dyadic sarcotubular system consisting of sarcoplasmic reticulum and T‐tubules. Thin and thick myofilaments were highly organized in regular repetitive arrays and formed contractile sarcomeres. Each repeating band unit of the sarcomere had three apparent striations, but the H‐zone and M‐lines were not prominent. Myofilaments were arranged into distinct sarcomeres defined by adjacent Z‐lines with relatively short lengths of 2.0 μm to 3.3 μm. Cross sections of the A‐band showed hexagon‐like arrangement of thick filaments, but the orbit of thin filaments around each thick filament was different from that seen in other vertebrates. Although each thick filament was surrounded by 12 thin filaments, the filament ratio of thin and thick myofilaments varied from 3:1 to 5:1 because thin filaments were shared by adjacent thick filaments.  相似文献   

20.
Summary The cytochemistry and ultrastructure of intracytoplasmic filaments of pulmonary lymphatic endothelial cells of neonatal rabbits were studied by comparison with myofilaments of the peribronchial and pulmonary vascular smooth muscle cells. Two types of endothelial filaments were observed: thin filaments (diameter: 50 Å) which lie close to the abluminal cell membrane; and thick filaments (diameter: 90 Å) which are dispersed throughout the cell cytoplasm.Following heavy meromyosin (HMM) treatment, characteristic arrowhead complexes formed in the thin lymphatic endothelial filaments as well as in the actin filaments of the smooth muscle cells. There was no detectable reaction of HMM with the thick filaments.After incubation with EDTA, the thin filaments were labile, and the thick filaments became the major filamentous component in the endothelial cells. In smooth muscle cells, the actin myofilaments were also labile while the 100 Å filaments were stable.These observations support the hypothesis that the actin-like thin endothelial lymphatic filaments form part of a contractile system, while the thick filaments constitute a plastic cell skeleton. The significance of the contractile system in lymphatic endothelial cells might lie in a mechanism for the active regulation of the endothelial intercellular junctions and gaps and hence the permeability of the lymphatic endothelial cell lining.This study was supported by The Council for Tobacco Research—U.S.A. The authors thank Professor Robert C. Rosan, M.D. (Saint-Louis University—U.S.A.) for expert advice. R. Renwart, B. Emanuel and R. Jullet for technical, G. Pison and St. Ons for photographical and N. Tyberghien for secretarial assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号