共查询到20条相似文献,搜索用时 15 毫秒
1.
The regional cerebral blood flow (rCBF) pattern of the normal human brain was drawn, and its structure was studied. Relative rCBF estimates for 66 regions of interest (cerebral anatomical-functional areas) were obtained using positron emission tomography in 158 healthy subjects aged 18–49 years. The rCBF rate variation range was 89–121% of the rCBF rate averaged over all regions of interest, taken as 100%. The rCBF rates were the highest (>115%) in the paracentral lobule, precuneus, insular cortex, primary visual cortex, and Broca’s area and the lowest (<95%) in the mediobasal regions of the temporal gyri and caudate nuclei. Analysis of the factor structure of the resultant pattern made it possible to classify cerebral anatomical-functional areas according to a predominant effect of one of the following factors on the interdependence between rCBF rates: (1) cytoarchitectonic characteristics; (2) the functional state of the cortex during quiet wakefulness; or (3) the brain vascular region to which the area belongs. The obtained pattern should be taken into account in both mapping of the functions of a normal brain and clinical diagnosis. 相似文献
2.
3.
4.
A method has been described which allows the measurement of cerebral blood flow (CBF) and solute transport across cerebral capillary wall in the same regional sample of rat brain. An inert diffusible indicator (iodoantipyrine) was used to measure a blood flow, in mixed gray and white matter, of approx. 1.0 ml/min/g. Using3H2O as a reference molecule, the flux of [14C]d-glucose into brain was determined at blood glucose concentration levels between 0.1 and 60 mM. In all discrete areas of brain sampled, a consistentV
max of 1.92 mol/min/g and aK
m of 8.35 mM was found. Glucose extraction by brain was inversely related to CBF, while a direct relationship was noted for glucose clearance. 相似文献
5.
目的:观察实验性大鼠脑损伤后不同时相点大脑皮层体感诱发电位(sensorysomaticevoked potentials,ssep)和局部血流量(regional cerebral blood flow,rCBF)的变化。方法:用流体冲击装置制作中度脑损伤模型SYD4200型神经诱发电位诊断系统监测皮层体感诱发电位,氢清除测定大脑局部血流量。结果:中度脑损伤后rCBF明显低于伤前和正常对照组;大脑皮层体感诱发电位的潜伏期明显延长。结论:SEP的变化与脑血流量有着一定的关系,一定程度上SEP的变化可反映脑损伤后血流量的变化。 相似文献
6.
S Watanabe S Otsuki K Mitsunobu T Sannomiya N Okumura 《Journal of neurochemistry》1970,17(11):1571-1577
—In order to study changes of the glycolytic-respiratory system and amino acid metabolism associated with blood flow disturbance, the cat brain perfusion was conducted with artificial blood containing [U-14C]glucose and the results were compared with those of standard perfusion keeping the cerebral blood flow at constant rate. The findings of the present study are briefly summarized: (1) In blood flow disturbance there was observed an accumulation of lactate just as seen in the low functional state observable in the standard perfusion. However the increase in relative specific activity of lactate was not so marked as the rise in cerebral lactate content, and this indicates that there is an increase of lactate production from substrates other than glucose as well as an increase of net flow of glucose carbon to lactate. (2) In blood flow disturbance relative specific activities of glutamate, aspartate, glutamine and respiratory CO2 were decreased as compared with those in the brain of high functional state. The relative specific activity of GABA in the reduced blood flow brain was at the same level as that of the brain at high functional state and it was higher than the relative specific activity of glutamate. (3) The relative specific activity and content of alanine were increased in the low function brain with standard perfusion. 相似文献
7.
8.
9.
A case with unilateral symptoms of Parkinson syndrome is presented in which interesting changes in the topographic patterns of cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) were observed by positron emission tomography. This case was associated with severe tremor at rest exclusively in the left extremities. The parietal CBF and CMRO2 for the affected hemisphere were apparently lower than those for the nonaffected hemisphere preoperatively. After thalamotomy involving the right nucleus ventralis lateralis, including the ventralis intermedius, concomitant with complete disappearance of the tremor, the parietal CBF and CMRO2 for the affected side increased and even exceeded those for the nonaffected side. 相似文献
10.
11.
12.
Diagnosis of patients with a disorder of consciousness is very challenging. Previous studies investigating resting state networks demonstrate that 2 main features of the so-called default mode network (DMN), metabolism and functional connectivity, are impaired in patients with a disorder of consciousness. However, task-induced deactivation--a third main feature of the DMN--has not been explored in a group of patients. Deactivation of the DMN is supposed to reflect interruptions of introspective processes. Seventeen patients with unresponsive wakefulness syndrome (UWS, former vegetative state), 8 patients in minimally conscious state (MCS), and 25 healthy controls were investigated with functional magnetic resonance imaging during a passive sentence listening task. Results show that deactivation in medial regions is reduced in MCS and absent in UWS patients compared to healthy controls. Moreover, behavioral scores assessing the level of consciousness correlate with deactivation in patients. On single-subject level, all control subjects but only 2 patients in MCS and 6 with UWS exposed deactivation. Interestingly, all patients who deactivated during speech processing (except for one) showed activation in left frontal regions which are associated with conscious processing. Our results indicate that deactivation of the DMN can be associated with the level of consciousness by selecting those who are able to interrupt ongoing introspective processes. In consequence, deactivation of the DMN may function as a marker of consciousness. 相似文献
13.
Karbowski J 《PloS one》2011,6(10):e26709
Brain is one of the most energy demanding organs in mammals, and its total metabolic rate scales with brain volume raised to a power of around 5/6. This value is significantly higher than the more common exponent 3/4 relating whole body resting metabolism with body mass and several other physiological variables in animals and plants. This article investigates the reasons for brain allometric distinction on a level of its microvessels. Based on collected empirical data it is found that regional cerebral blood flow CBF across gray matter scales with cortical volume V as CBF ~ V(-1/6), brain capillary diameter increases as V(1/12), and density of capillary length decreases as V(-1/6). It is predicted that velocity of capillary blood is almost invariant (~V(ε)), capillary transit time scales as V(1/6), capillary length increases as V(1/6+ε), and capillary number as V(2/3-ε), where ε is typically a small correction for medium and large brains, due to blood viscosity dependence on capillary radius. It is shown that the amount of capillary length and blood flow per cortical neuron are essentially conserved across mammals. These results indicate that geometry and dynamics of global neuro-vascular coupling have a proportionate character. Moreover, cerebral metabolic, hemodynamic, and microvascular variables scale with allometric exponents that are simple multiples of 1/6, rather than 1/4, which suggests that brain metabolism is more similar to the metabolism of aerobic than resting body. Relation of these findings to brain functional imaging studies involving the link between cerebral metabolism and blood flow is also discussed. 相似文献
14.
Lactography as an approach to monitor glucose metabolism on-line in brain and muscle 总被引:5,自引:0,他引:5
1. Thus far metabolic processes in the intact animal (or man) have been studied either by the analysis of body fluids, of biopsies, of tissue obtained post mortem or by techniques, requiring dedicated and expensive equipment (such as positron emission tomography or magnetic resonance spectroscopy). 2. Here we describe a relatively simple and inexpensive technique, that can be applied in vivo to study metabolism in brain regions and muscle in the freely moving rat and in human peripheral tissue. 3. The method is based on microdialysis allowing continuous sampling from the extracellular space, the enzymatic conversion of lactate and the on-line detection of fluorescent NADH. 4. Examples of the application of our technique include the monitoring of lactate efflux from various brain regions of behaving animals under a variety of stress exposures, during ischemia or hypoxia and drug treatments. 5. The results indicate that in brain lactate is not exclusively formed under hypoxia and that neuronal activation leads also to lactate formation, possibly due to the compartmentation of both the involved enzymes and the energy metabolism. 6. The increase of lactate formation in contracting or ischemic muscle or during exercise could also be followed on-line in the rat, suggesting that our approach allows the continuous monitoring of anaerobic metabolism in man e.g. during traumatic or arteriosclerotic limb ischemia or lactic acidosis in shock states. 7. The principle of our approach can easily be adapted to other metabolites, thus enabling to monitor other metabolic pathways in vivo as well. 相似文献
15.
16.
Mather K Laakso M Edelman S Hook G Baron A 《American journal of physiology. Endocrinology and metabolism》2000,279(6):E1264-E1270
We hypothesized that the vasodilation observed during insulin stimulation is closely coupled to the rate of glucose metabolism. Lean (L, n = 13), obese nondiabetic (OB, n = 13), and obese type 2 diabetic subjects (Type 2 DM, n = 16) were studied. Leg blood flow (LBF) was examined under conditions of euglycemic hyperinsulinemia (EH) and hyperglycemic hyperinsulinemia (HH), which produced a steady-state whole body glucose disposal rate (GDR) of approximately 2,000 micromol. m(-2). min(-1). At this GDR, under both conditions, subjects across the range of insulin sensitivity exhibited equivalent LBF (l/min EH: L, 0.42 +/- 0.03; OB, 0.43 +/- 0. 03; Type 2 DM, 0.38 +/- 0.07; P = 0.72 by ANOVA. HH: L, 0.44 +/- 0. 04; OB, 0.39 +/- 0.05; Type 2 DM, 0.41 +/- 0.04; P = 0.71). The continuous relationship between LBF and GDR did not differ across subject groups [slope x 10(-5) l/(micromol. m(-2). min(-1)) by ANOVA. EH: L, 8.6; OB, 9.2; Type 2 DM, 7.9; P = 0.91. HH: L, 4.2; OB, 2.5; Type 2 DM, 4.1; P = 0.77], although this relationship did differ between the EH and HH conditions (P = 0.001). These findings support a physiological coupling of LBF and insulin-mediated glucose metabolism. The mechanism(s) linking substrate delivery and metabolism appears to be intact in insulin-resistant states. 相似文献
17.
The effect of irradiation of the central nervous system by microwaves (MW) at a frequency of 2450 MHz and power 5-40 W on the regulation of cerebral circulation and oxygen supply to the nervous tissue were studied in rabbits. Local irradiation of the exposed cerebral cortex resulted in hyperemia and hyperoxia in the zone of exposure induced by the hyperthermal effect of MW. When the region of the medulla oblongata was irradiated even with low MW power (not leading to hyperthermia), the local circulation and oxygen tension increased in the whole brain, apparently due to the impairment of the regulation of the cerebral blood flow and oxygen supply to the brain tissue. 相似文献
18.
19.
Mingming Zhu Joseph J. H. Ackerman Dmitriy A. Yablonskiy 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2009,179(6):701-710
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral
blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved
using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases
in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed
with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes,
but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest
brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C,
respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min
under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential
and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature
differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. 相似文献
20.
Quantitative autoradiography of [14C]deoxyglucose, [14C]iodoantipyrine, and [14C]leucine was used to estimate regional cerebral glucose metabolism, cerebral blood flow, and cerebral protein synthesis, respectively, in rats during morphine dependence and withdrawal. Glucose metabolism was elevated in 19 of 26 selected brain regions; the elevations in glucose metabolism were similar when data were expressed as either optical density ratios or as calculated rate values of mol/100 gm/min. Restraining the rats produced heterogeneous effects on glucose metabolism during morphine withdrawal (MW). Neither estimated cerebral blood flow nor cerebral protein synthesis were affected by morphine and/or naloxone treatments in either naive or morphine-dependent rats. The data demonstrate that changes in regional cerebral glucose utilization occur independently of blood flow changes and exclude the possibility that regional changes in glucose utilization occur as a consequence of large regional changes in protein synthesis rates in brain. These data confirm the utility of 2-deoxyglucose measures of MW as objective biochemical indices of opiate agonist and antagonist effects in vivo. 相似文献