首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25?% of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50?% of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.  相似文献   

2.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

3.
4.
We have previously reported the establishment and preliminary characterization of polyclonal hepatitis B virus (HBV) nucleoprotein (HBcAg)-specific CD4+ and CD8+ T cell lines derived from the hepatic lymphomononuclear cell infiltrate of several patients with chronic active hepatitis B. The isolated subsets from these lines were specifically activated by HBcAg and displayed antigen-specific help and suppression with respect to proliferation of the alternate subset. One of these lines was recently cloned by limiting dilution, and four HBcAg-specific CD3+ CD4+ CD8-DR+ T cell lines were produced that had a 95.3% likelihood of monoclonality. Antigenic specificity was confirmed by dose-dependent, HLA class II (DR)-restricted proliferation in response to recombinant and human serum-derived HBcAg and the lack of proliferation to HBV envelope antigens (HBsAg and pre-S(2)Ag). All cloned lines were interleukin 2 dependent, produced interferon-gamma in an antigen-specific manner, and provided antigen-specific help to autologous B cells with respect to anti-HBc production. We conclude that HBcAg-specific, HLA-class II restricted helper T cells capable of inducing antigen-specific functional responses by autologous B lymphocytes and T lymphocytes are present at the site of viral antigen synthesis and hepatocellular injury in HBV infection.  相似文献   

5.
T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.  相似文献   

6.
To identify prostate cancer-associated Ags, tumor-reactive T lymphocytes were generated using iterative stimulations of PBMC from a prostate cancer patient with an autologous IFN-gamma-treated carcinoma cell line in the presence of IL-2. A CD8+ T cell line and TCR alphabeta+ T cell clone were isolated that secreted IFN-gamma and TNF-alpha in response to autologous prostate cancer cells but not to autologous fibroblasts or lymphoblastoid cells. However, these T cells recognized several normal and malignant prostate epithelial cell lines without evidence of shared classical HLA molecules. The T cell line and clone also recognized colon cancers, but not melanomas, sarcomas, or lymphomas, suggesting recognition of a shared epithelium-associated Ag presented by nonclassical MHC or MHC-like molecules. Although Ag recognition by T cells was inhibited by mAb against CD8 and the TCR complex (anti-TCR alphabeta, CD3, Vbeta12), it was not inhibited by mAb directed against MHC class Ia or MHC class II molecules. Neither target expression of CD1 molecules nor HLA-G correlated with T cell recognition, but beta2-microglobulin expression was essential. Ag expression was diminished by brefeldin A, lactacystin, and cycloheximide, but not by chloroquine, consistent with an endogenous/cytosolic Ag processed through the classical class I pathway. These results suggest that prostate cancer and colon cancer cells can process and present a shared peptidic Ag to TCR alphabeta+ T cells via a nonclassical MHC I-like molecule yet to be defined.  相似文献   

7.
Hepatitis B core antigen (HBcAg)-specific T cell lines were established from hepatic lymphomononuclear cells derived from five patients with chronic active hepatitis B. No hepatitis B virus envelope antigen-specific cell lines were established. Proliferation in response to recombinant and native HBcAg, but not to native hepatitis B surface antigen containing the pre-S(2) region, confirmed the specificity of the five T cell lines. All cell lines represented mixed populations of CD4+ and CD8+ T cells. The CD4+ subset provided antigen-specific help to autologous B cells with respect to anti-HBc production and to CD8+ cells with regard to HBcAg-induced proliferation and suppressor activity. The CD8+ subset contained suppressor cells that selectively inhibited the proliferative response of autologous HBcAg-specific CD4+ cells without inhibiting CD4+ cells of unrelated specificity (tetanus toxoid). Moreover, the CD8+ cells were also capable of suppressing HBcAg-stimulated antibody to HBcAg production without showing inhibition of total immunoglobulin production stimulated by pokeweed mitogen. The cytotoxic potential of the T cell lines was established in a lectin-dependent cytotoxicity system; natural killer cytotoxicity was completely absent. Our data suggest that the lesional T cells present at the site of hepatocellular injury in chronic active hepatitis B are primarily HBcAg-specific lymphocytes of the helper and suppressor/cytotoxic phenotypes and that both are functionally competent.  相似文献   

8.
Cryopreservation of peripheral blood mononuclear cells (PBMC) from animal model studies and clinical trials is utilized as a primary method for long-term storage of PBMC for future in vitro and in vivo applications. The objective of this study was to define the mechanistic pathways involved in cryopreservation-induced apoptosis of CD4+ T-cells in PBMC, and to evaluate a cytokine treatment of the cryopreserved samples to rescue apoptosis for the potential future use of the cryopreserved PBMC. Using cryopreserved PBMC samples isolated from na?ve and Simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, frozen PBMC showed significantly increased levels of apoptosis-induced CD4+ T-cell death compared to fresh PBMC over a 5-day culture period as detected by Annexin V/PI and trypan blue staining. Mechanistic studies using a broad-spectrum caspase inhibitor z-VAD demonstrated a crucial involvement of caspases in cryopreservation-induced apoptosis of CD4+ T-cells. Furthermore, the ability of z-VAD to inhibit both mitochondrial membrane perturbation and apoptotic cell death implicated the involvement of caspase-mediated mitochondrial membrane damage in cryopreservation-induced apoptosis of CD4+ T-cells. Due to their known properties to promote T-cell survival and inhibit apoptosis, we evaluated the ability of IL-2, IL-4, and IL-7 combination cytokine treatment of the cryopreserved cells to rescue apoptosis of the CD4+ T-cells. The cytokine treatment resulted in a significant inhibition (p<0.01) of apoptosis-induced cell death and rescued CD4+ T-cell survival (p<0.01) in the cryopreserved cells. Efficient rescue of cryopreserved CD4+ T-cells has clinical significance in immune function analysis of longitudinal samples and in various long-term protocols requiring cryopreservation, including bone marrow and stem cell transplantation.  相似文献   

9.
The CD8 coreceptor enhances T cell function by stabilizing the TCR/peptide/MHC complex and/or increasing T cell avidity via interactions with the intracellular kinases Lck and LAT. We previously reported a CD4(+) T cell (TIL 1383I), which recognizes the tumor-associated Ag tyrosinase in the context of HLA-A2. To determine whether CD8 independent tumor cell recognition is a property of the TCR, we used retroviral transduction to express the TIL 1383I TCR in the CD8(-) murine lymphoma, 58 alpha(-)/beta(-). Immunofluorescent staining of TCR-transduced cells with human TCR V beta subfamily-specific and mouse CD3-specific Abs confirmed surface expression of the transferred TCR and coexpression of mouse CD3. Transduced effector cells secreted significant amounts of IL-2 following Ag presentation by tyrosinase peptide-pulsed T2 cells as well as stimulation with HLA-A2(+) melanoma lines compared with T2 cells alone or HLA-A2(-) melanoma cells. Further analysis of TCR-transduced clones demonstrated a correlation between T cell avidity and cell surface expression of the TCR. Therefore, the TIL 1383I TCR has sufficient affinity to mediate recognition of the physiologic levels of Ag expressed by tumor cells in the absence of CD8 expression.  相似文献   

10.
Suppressor T cell (Ts) lines specific for myelin basic protein (MBP)-reactive helper T cell (Th) clones were generated from two patients with multiple sclerosis (MS) following a primary culture of peripheral blood mononuclear cells (PBMC) with MBP and cyclosporine A (CsA). These suppressor T cell lines were maintained in culture by alternate stimulation with MBP and antigen-presenting cells (APC). The Ts lines expressed preferentially the CD4 phenotype (5/6 Ts lines tested) and exhibited potent antigen-specific suppressor activity on the proliferation of MBP-specific Th clones and not on the T cell lines with other antigen specificity. For some Ts lines, a Ts-to-Th ratio of 1 was sufficient to inhibit the proliferation of MBP-specific T cells by 90%. The suppressor T cells obtained were weakly responsive to MBP and required the presence of the autologous PBMC for proliferation. Furthermore, proliferation of these suppressor T cell lines was restricted by HLA-DR molecules (for CD4+ Ts lines) and HLA class I (for a CD8+ Ts line). The suppressor T cell lines generated and the techniques described in this study may be helpful in our understanding of the events involved in the immune regulation in MS and other autoimmune diseases.  相似文献   

11.
The transfer of T cell receptor (TCR) genes by viral vectors represents a promising technique to generate antigen-specific T cells for adoptive immunotherapy. TCR-transduced T cells specific for infectious pathogens have been described, but their protective function in vivo has not yet been examined. Here, we demonstrate that CD8 T cells transduced with the P14 TCR specific for the gp33 epitope of lymphocytic choriomeningitis virus exhibit protective activities in both viral and bacterial infection models in mice.  相似文献   

12.
Stimulation of PBMC, in children recovering from acute measles, with autologous EBV-transformed and measles virus (MV)-infected lymphoblastoid cell lines (B-LCL) expanded primarily MV-specific CD8+ T cells. A large number of CD8+ T cell clones were obtained either by passaging of bulk cultures at limiting dilutions or by direct cloning of PBMC without previous stimulation in bulk culture. The MV-specific CD8+ T cell clones responding in a proliferative and a CTL assay were found to be class I MHC restricted. In contrast, CD4+ MV-specific T cell clones, which were generated by the same protocol, recognized MV in association with class II MHC molecules. Analysis of processing requirements for Ag presentation to CD8+ and CD4+ T cell clones, measured by the effect of chloroquine in a proliferative T cell response, revealed that both types of T cells recognized MV Ag processed via the endogenous/cytoplasmic pathway. Thus, these studies indicate that, as in most other viral infections and in contrast to previous suggestions, the class I MHC-restricted CTL response by CD8+ T cells may be an important factor in the control and elimination of MV infection. Therefore, the role proposed for CD4+ class II-restricted T cells in recovery from measles needs to be reevaluated.  相似文献   

13.
Cytotoxic cells specific for Toxoplasma gondii-infected cells were detected in the peripheral blood leukocytes from a patient with acute toxoplasmosis. The cytotoxicity was mediated by CD5+, CD4-, CD8+ cells. The cytotoxic T cells lysed Toxoplasma-infected target cells with HLA class I restriction. Two types of T cell clones were established from peripheral blood leukocytes of a patient with chronic toxoplasmosis; one was a CD5+, CD4-, CD8+ cytotoxic cell specific for Toxoplasma-infected cells, and the other was a CD5+, CD4+, CD8- proliferative cell that responded to Toxoplasma antigen. Toxoplasma-infected cell-specific cytotoxic cloned T cells recognize the infected target cells in the context of the HLA class I molecules, and the CD8 molecule was involved in the cytotoxicity. Toxoplasma antigen-specific proliferative cloned T cells were stimulated by Toxoplasma antigen-pulsed or Toxoplasma-infected cells in conjunction with HLA-DR molecule on the target cells. Thus, antigen presentation by Toxoplasma-infected cells for activation of both cytotoxic and proliferative T cells has been demonstrated.  相似文献   

14.
In pulmonary sarcoidosis, the marked expansion of CD4+ (helper/inducer) T cells in the alveolar structures of the lung is maintained by local IL-2 release by activated CD4+ HLA-DR+ T cells without concomitant expansion and activation of CD8+ (suppressor/cytotoxic) T cells, suggesting that sarcoid may be associated with a generalized abnormality of CD8+ T cells. Consistent with this concept, evaluation of the expression of the IL-2R on fresh lung T cells from individuals with active sarcoidosis demonstrated that 7 +/- 1% of sarcoid lung CD4+ T cells are spontaneously expressing the IL-2R compared with only 1 +/- 1% lung CD8+ T cells (p less than 0.01). However, stimulation of purified sarcoid blood CD8+ T cells with the anti-T3/TCR complex mAb OKT3 was followed by the normal expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). In addition, lung sarcoid CD8+ T cells responded to OKT3 similarly to normal lung CD8+ T cells and to autologous blood CD8+ T cells as regards expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). Finally, using CD4+ cells activated with allogenic Ag to induce, in coculture, fresh autologous CD8+ cells to suppress proliferation of fresh autologous CD4+ cells to the same Ag, sarcoid CD8+ T cells suppressed CD4+ cell proliferation in a normal fashion (p greater than 0.1). These results demonstrate that sarcoid CD8+ (suppressor/cytotoxic) T cells are competent to respond to a proliferation signal normally and can be induced to normally suppress CD4+ T cell proliferation to Ag, suggesting that the expansion of activated CD4+ T cells in pulmonary sarcoidosis is not due to a generalized abnormality of CD8+ T cells or of their suppressor T cell function.  相似文献   

15.
Cytolytic activity of CD8+ T cells is rarely evaluated. We describe here a new cell-based assay to measure the capacity of antigen-specific CD8+ T cells to kill CD4+ T cells loaded with their cognate peptide. Target CD4+ T cells are divided into two populations, labeled with two different concentrations of CFSE. One population is pulsed with the peptide of interest (CFSE-low) while the other remains un-pulsed (CFSE-high). Pulsed and un-pulsed CD4+ T cells are mixed at an equal ratio and incubated with an increasing number of purified CD8+ T cells. The specific killing of autologous target CD4+ T cells is analyzed by flow cytometry after coculture with CD8+ T cells containing the antigen-specific effector CD8+ T cells detected by peptide/MHCI tetramer staining. The specific lysis of target CD4+ T cells measured at different effector versus target ratios, allows for the calculation of lytic units, LU30/106 cells. This simple and straightforward assay allows for the accurate measurement of the intrinsic capacity of CD8+ T cells to kill target CD4+ T cells.  相似文献   

16.
For this report, the rapid identification and characterization of human immunodeficiency virus type 1 (HIV-1)-derived broadly cross-subtype-reactive CD8 cytotoxic T lymphocyte (CTL) epitopes were performed. Using a gamma interferon (IFN-gamma) Elispot assay-based approach and a panel of recombinant vaccinia viruses expressing gag, env, pol, and nef genes representing the seven most predominant subtypes and one circulating recombinant form of HIV-1, the subtype specificity and cross-subtype reactivity of a CD8 response were directly measured from circulating peripheral blood mononuclear cells (PBMC). Enhanced sensitivity of detection of CD8 responses from cryopreserved PBMC was achieved using autologous vaccinia virus-infected B-lymphoblastoid cell lines as supplemental antigen-presenting cells. Of eleven subjects studied, six exhibited broadly cross-subtype-reactive CD8-mediated IFN-gamma production (at least seven of eight subtypes recognized) to at least one major gene product from HIV-1. Screening of subjects showing broadly cross-subtype-specific responses in the vaccinia virus-based enzyme-linked immunospot (Elispot) assay using a panel of overlapping peptides resulted in the identification of cross-subtype responses down to the 20-mer peptide level in less than 3 days. Three subjects showed broad cross-subtype reactivity in both the IFN-gamma Elispot assay and the standard chromium release cytotoxicity assay. Fine mapping and HLA restriction analysis of the response from three subjects demonstrated that this technique can be used to define epitopes restricted by HLA-A, -B, and -C alleles. In addition, the ability of all three epitopes to be processed from multiple subtypes of their parent proteins and presented in the context of HLA class I molecules following de novo synthesis is shown. While all three minimal epitopes mapped here had previously been defined as HIV-1 epitopes, two are shown to have novel HLA restriction alleles and therefore exhibit degenerate HLA binding capacity. These findings provide biological validation of HLA supertypes in HIV-1 CTL recognition and support earlier studies of cross-subtype CTL responses during HIV-1 infection.  相似文献   

17.
MELOE-1 is an overexpressed melanoma antigen containing a HLA-A2 restricted epitope, involved in melanoma immunosurveillance of patients adoptively transferred with tumour infiltrating lymphocytes (TIL). The use of the full-length antigen (46 aa) for anti-melanoma vaccination could be considered, subject to the presence of Th epitopes all along MELOE-1 sequence. Thus, in this study we evaluated in vitro the immunoprevalence of the different regions of MELOE-1 (i.e. their ability to induce CD4 T cell responses in vitro from PBMC). Stimulation of PBMC from healthy subjects with MELOE-1 induced the amplification of CD4 T cells specific for various regions of the protein in multiple HLA contexts, for each tested donor. We confirmed these results in a panel of melanoma patients, and documented that MELOE-1 specific CD4 T cells, were mainly Th1 cells, presumably favourable to the amplification of CD8 specific T cells. Using autologous DC, we further showed that these class II epitopes could be naturally processed from MELOE-1 whole protein and identified minimal epitopes derived from each region of MELOE-1, and presented in four distinct HLA contexts. In conclusion, vaccination with MELOE-1 whole polypeptide should induce specific Th1 CD4 responses in a majority of melanoma patients, stimulating the amplification of CD8 effector cells, reactive against melanoma cells.  相似文献   

18.
This study examined the role and source of endogenous interleukin-10 (IL) secretion in visceral leishmaniasis (VL). The amounts of endogenous and Leishmania specific IL-10 and interferon-gamma (IFN) secreted by peripheral blood mononuclear cells (PBMC) from VL patients were compared. The correlation coefficient between endogenous IL-10 secretion and Leishmania specific IFN-gamma was -0. 77, suggesting a major role for endogenous IL-10 secretion in VL. The effects of CD4+ and CD8+ T cell clones, isolated from a treated VL patient, on IL-10 secretion were assayed by mixing the clones with autologous, inactivated PBMC. The CD8+ clones mediated increased levels of IL-10 secretion in the presence of PBMC alone suggesting that CD8+ T cells may mediate endogenous IL-10 secretion.  相似文献   

19.
The ability to grow normal T lymphocytes in long term culture has advanced our understanding of T cell biology. The growth of CD4+ cell lines allowed a further evaluation and appreciation of functional subtypes within this group. Cytotoxic CD8+ T cells have been characterized as well. The routine and continuous culture of Ag-nonspecific CD8+ Ts cells has been difficult to achieve. We have found that CD8+ T cells that suppress T cell proliferation and lack cytotoxic activity against T cells can be routinely obtained from PWM or PHA-stimulated PBMC. Continuous culture of T cell blasts from PWM or PHA-stimulated PBMC resulted in the growth of CD4+ and CD8+ T cells. These lines developed suppressor cell activity within 7 days after stimulation with PWM and 3 to 4 wk after stimulation with PHA. Concomitant with the development of suppressor activity was the loss of CD4+ T cells resulting in homogeneous lines of CD8+ suppressor cells. These cell lines have been maintained in continuous culture for greater than 6 mo by addition of rIL-2 twice weekly and restimulation with feeder cells and PHA every 2 wk. Activity of these cell lines was relatively resistant to irradiation or treatment with mitomycin C. Both cell lines suppressed proliferation of autologous or heterologous CD4+ T cells stimulated with PWM, OKT3, or tetanus toxoid but failed to suppress proliferation of CD4+ T cells in a mixed lymphocyte reaction. CD4+ T cells stimulated with PWM produced equivalent amounts of IL-2 in the presence or absence of Ts cells but failed to express the IL-2R (TAC) on their surface in the presence of Ts cells. By contrast, CD4+ T cell lines or cytotoxic CD8+ T cell lines failed to suppress proliferation of CD4+ T cells. With these results we describe methods for the generation and continuous culture of Ag-nonspecific CD8+ Ts cells and define some of their properties. These cells lines should be helpful in further elucidating the functional and phenotypic repertoire of CD8+ Ts cells.  相似文献   

20.
A recent report showed that analysis of CD154 expression in the presence of the secretion inhibitor Brefeldin A (Bref A) could be used to assess the entire repertoire of antigen-specific CD4(+) T helper cells. However, the capacity of intracellular CD154 expression to identify antigen-specific CD8(+) T cells has yet to be investigated. In this study, we compared the ability of intracellular CD154 expression to assess antigen-specific CD8(+) T cells with that of accepted standard assays, namely intracellular cytokine IFN-gamma staining (ICS) and MHC class I tetramer staining. The detection of intracellular CD154 molecules in the presence of Bref A reflected the kinetic trend of antigen-specific CD8+ T cell number, but unfortunately showed less sensitivity than ICS and tetramer staining. However, ICS levels peaked and saturated 8 h after antigenic stimulation in the presence of Bref A and then declined, whereas intracellular CD154 expression peaked by 8 h and maintained the saturated level up to 24 h post-stimulation. Moreover, intracellular CD154 expression in antigen-specific CD8+ T cells developed in the absence of CD4(+) T cells changed little, whereas the number of IFN-gamma-producing CD8(+) T cells decreased abruptly. These results suggest that intracellular CD154 could aid the assessment of antigen-specific CD8(+) T cells, but does not have as much ability to identify heterogeneous CD4(+) T helper cells. Therefore, the combined analytical techniques of ICS and tetramer staining together with intracellular CD154 assays may be able to provide useful information on the accurate phenotype and functionality of antigen-specific CD8(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号