首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.  相似文献   

2.
Disorders of sexual development (DSD), ranging in severity from genital abnormalities to complete sex reversal, are among the most common human birth defects with incidence rates reaching almost 3%. Although causative alterations in key genes controlling gonad development have been identified, the majority of DSD cases remain unexplained. To improve the diagnosis, we screened 116 children born with idiopathic DSD using a clinically validated array-based comparative genomic hybridization platform. 8951 controls without urogenital defects were used to compare with our cohort of affected patients. Clinically relevant imbalances were found in 21.5% of the analyzed patients. Most anomalies (74.2%) evaded detection by the routinely ordered karyotype and were scattered across the genome in gene-enriched subtelomeric loci. Among these defects, confirmed de novo duplication and deletion events were noted on 1p36.33, 9p24.3 and 19q12-q13.11 for ambiguous genitalia, 10p14 and Xq28 for cryptorchidism and 12p13 and 16p11.2 for hypospadias. These variants were significantly associated with genitourinary defects (P = 6.08×10−12). The causality of defects observed in 5p15.3, 9p24.3, 22q12.1 and Xq28 was supported by the presence of overlapping chromosomal rearrangements in several unrelated patients. In addition to known gonad determining genes including SRY and DMRT1, novel candidate genes such as FGFR2, KANK1, ADCY2 and ZEB2 were encompassed. The identification of risk germline rearrangements for urogenital birth defects may impact diagnosis and genetic counseling and contribute to the elucidation of the molecular mechanisms underlying the pathogenesis of human sexual development.  相似文献   

3.
Charcot-Marie-Tooth disease type 2A (CMT2A) is one of the subdivisions of CMT2, an axonal defective form of peripheral neuropathy. Different mutations in the mitochondrial GTPase mitofusin 2 (MFN2) gene produce various degrees of severity of CMT2A phenotype or CMT2A related hereditary motor and sensory neuropathy VI (HMSN VI). The occurrence of de novo mutations in MFN2 is by far the most frequent as compared to other CMT genes. About 26% of the pathogenic MFN2 mutations reported in the Inherited Peripheral Neuropathies Mutations Database are de novo. This study identified two de novo mutations of MFN2, c.1048T>C (S350P) and c.310C>T (R104W), from two Korean CMT2A patients with early onset severe clinical symptoms. The comparative genotype-phenotype correlations of these mutations according to a previously reported case were also viewed. The R104W mutation has been reported recurrently, outspread over different ethnic backgrounds as de novo. The re-occurrence of the same pathogenic de novo variants within and amongst different ethnic groups clearly suggests a susceptible hot spot for mutation in the MFN2 gene. If the deleterious mutations discourage fitness and reproduction, this negative selection factor should ultimately reduce the prevalence of the disease. It appears that spontaneous de novo mutations in turn seem to be maintaining the disease phenotype??s prevalence.  相似文献   

4.
Although plant mitochondrial genomes typically show low rates of sequence evolution, levels of divergence in certain angiosperm lineages suggest anomalously high mitochondrial mutation rates. However, de novo mutations have never been directly analyzed in such lineages. Recent advances in high-fidelity DNA sequencing technologies have enabled detection of mitochondrial mutations when still present at low heteroplasmic frequencies. To date, these approaches have only been performed on a single plant species (Arabidopsis thaliana). Here, we apply a high-fidelity technique (Duplex Sequencing) to multiple angiosperms from the genus Silene, which exhibits extreme heterogeneity in rates of mitochondrial sequence evolution among close relatives. Consistent with phylogenetic evidence, we found that Silene latifolia maintains low mitochondrial variant frequencies that are comparable with previous measurements in Arabidopsis. Silene noctiflora also exhibited low variant frequencies despite high levels of historical sequence divergence, which supports other lines of evidence that this species has reverted to lower mitochondrial mutation rates after a past episode of acceleration. In contrast, S. conica showed much higher variant frequencies in mitochondrial (but not in plastid) DNA, consistent with an ongoing bout of elevated mitochondrial mutation rates. Moreover, we found an altered mutational spectrum in S. conica heavily biased towards AT→GC transitions. We also observed an unusually low number of mitochondrial genome copies per cell in S. conica, potentially pointing to reduced opportunities for homologous recombination to accurately repair mismatches in this species. Overall, these results suggest that historical fluctuations in mutation rates are driving extreme variation in rates of plant mitochondrial sequence evolution.  相似文献   

5.
Autosomal recessive spinal muscular atrophy (SMA) is classified, by age of onset and maximal motor milestones achieved, into type I (severe form), type II (intermediate form) and type III (mild/moderate form). SMA is caused by mutations in the survival motor neuron telomeric gene (SMN1) and a centromeric functional copy of this gene (SMN2) exists, both genes being located at 5q13. Homozygous deletion of exons 7 and 8 of SMN1 has been detected in approx 85% of Spanish SMA patients regardless of their phenotype. Nineteen cases with the sole deletion of exon 7 but not exon 8 (2 cases of type I, 13 cases of type II, four cases of type III) were further analysed for the presence of SMN2-SMN1 hybrid genes. We detected four different hybrid structures. Most of the patients were carriers of a hybrid structure: centromeric intron 6- centromeric exon 7- telomeric exon 8 (CCT), with or without neuronal apoptosis-inhibitor protein (NAIP). In two patients, a different hybrid structure, viz. telomeric intron 6- centromeric exon 7- telomeric exon 8 (TCT), was detected with or without NAIP. A phenotype-genotype correlation comparing the different structures of the hybrid alleles was delineated. Type I cases in our series are attributable to intrachromosomal deletion with a smaller number of SMN2 copies. Most cases with hybrid genes are type II occurring by a combination of a classical deletion in one chromosome and a hybrid gene in the other. Type III cases are closely associated with homozygozity or compound heterozygozity for hybrid genes resulting from two conversion events and have more copies of hybrid genes and SMN2 than type I or II cases.  相似文献   

6.
Documentation of maternal uniparental disomy of chromosome 7 in 10% of patients with Russell-Silver syndrome (RSS), characterized by prenatal and postnatal growth retardation and dysmorphic features, has suggested the presence of an imprinted gene on chromosome 7 whose mutation is responsible for the RSS phenotype. Human GRB10 on chromosome 7, a homologue of the mouse imprinted gene Grb10, is a candidate, because GRB10 has a suppressive effect on growth, through its interaction with either the IGF-I receptor or the GH receptor, and two patients with RSS were shown to have a maternally derived duplication of 7p11-p13, encompassing GRB10. In the present study, we first demonstrated that the GRB10 gene is also monoallelically expressed in human fetal brain tissues and is transcribed from the maternally derived allele in somatic-cell hybrids. Hence, human GRB10 is imprinted. A mutation analysis of GRB10 in 58 unrelated patients with RSS identified, within the N-terminal domain of the protein, a P95S substitution in two patients with RSS. In these two cases, the mutant allele was inherited from the mother. The fact that monoallelic GRB10 expression was observed from the maternal allele in this study suggests but does not prove that these maternally transmitted mutant alleles contribute to the RSS phenotype.  相似文献   

7.
De novo dominant mutations in the GFAP gene have recently been associated with nearly all cases of Alexander disease, a rare but devastating neurological disorder. These heterozygous mutations must occur very early in development and be present in nearly all cells in order to be detected by the sequencing methods used. To investigate whether the mutations may have arisen in the parental germ lines, we determined the parental chromosome bearing the mutations for 28 independent Alexander disease cases. These cases included 17 different missense mutations and one insertion mutation. To enable assignment of the chromosomal origin of the mutations, six new single nucleotide polymorphisms in the GFAP gene were identified, bringing the known total to 26. In 24 of the 28 cases analyzed, the paternal chromosome carried the GFAP mutation (P<0.001), suggesting that they predominantly arose in the parental germ line, with most occurring during spermatogenesis. No effect of paternal age was observed. There has been considerable debate about the magnitude of the male to female germ line mutation rate; our ratio of 6:1 is consistent with indirect estimates based on the rate of evolution of the sex chromosome relative to the autosomic chromosomes.  相似文献   

8.
The germ line of origin for 13 of 14 de novo hemophilia B mutations has been determined. When added to previous reports, the origin, assuming no mosaicism, occurred in 43 female and 33 male gametes. Mutation rate estimates are twofold higher in males than in females. The pooled data also indicate that male and female germ lines have different mutation rates depending upon the type of mutation.  相似文献   

9.
Yang HP  Tanikawa AY  Kondrashov AS 《Genetics》2001,157(3):1285-1292
To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.  相似文献   

10.
Mitochondrial disorders are clinical phenotypes associated with mitochondrial dysfunction, which can be caused by mutations in mitochondrial DNA (mtDNA) or nuclear genes. In this review, we summarized the pathogenic mutations of nuclear genes associated with mitochondrial disorders. These nuclear genes encode, components of mitochondrial translational machinery and structural subunits and assembly factors of the oxidative phosphorylation, that complex. The molecular mechanisms, that nuclear modifier genes modulate the phenotypic expression of mtDNA mutations, are discussed in detail.  相似文献   

11.

Objectives

The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes.

Materials and methods

A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT‐PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase‐3, ‐8 and ‐9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor.

Results

Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p‐p38 and p‐JNK MAPKs significantly decreased, and PLCγ2‐induced cell proliferation inhibition and cell apoptosis were obviously reversed.

Conclusions

This study showed that PLCγ2 regulates hepatocyte growth through PKCD‐dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo.
  相似文献   

12.
13.
Rat sarcoma gene (RAS) holds great importance in pathogenesis of acute myeloid leukemia (AML). The activated mutations in Neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Kirsten rat sarcoma viral oncogene homolog (KRAS) confers proliferative and survival signals, deliberating numerous effects on overall survival and progression free survival in AML patients. In this study thirty one (31) blood samples of adult newly diagnosed AML patients were collected to identify possible incidence of mutations through amplification of KRAS (exon 1 and 2) and NRAS gene (exon 1 and 2) using polymerase chain reaction (PCR). Amplicons were then subjected to sequencing and were analyzed through Geneious Prime 2019. Five of thirty one (16.12%) patients had altered sites in either NRAS or KRAS. The NRAS mutations were observed in three AML patients (N = 3, 9.67%). A novel missense mutation NRAS-I36R (239 T > G) representing a substitution of single nucleotide basepair found in NRAS exon 1 while exon 2 was detected with heterozygous mutation NRAS-E63X (318G > T) and insertion (A), resulting in frameshift of the amino acid sequence and insertion of two nucleotide basepairs (TA) in two of the patients. KRAS mutations (N = 2, 6.45%) were found in exon 1 whereas no mutations in KRAS exon 2 were detected in our patient cohort. Mutation in KRAS Exon 1, KRAS-D30N (280G > A) was observed in two patients and one of them also had a novel heterozygous mutation KRAS-L16N (240G > C). In addition there was no statistically significant association of mutRAS gene of AML patients with several prognostic markers including age, gender, karyotyping, CD34 positivity, cytogenetic abnormalities, total leukocyte count, white blood cell count and French-American-British (FAB) classification. However, the presence of mutRAS gene were strongly associated (p = 0.001) with increased percentage of bone marrow blasts. The prevalence of mutations in correlation with clinical and hematological parameter is useful for risk stratification in AML patients.  相似文献   

14.
Multiple loss‐of‐function mutations in TRIAD3 (a.k.a. RNF216) have recently been identified in patients suffering from Gordon Holmes syndrome (GHS), characterized by cognitive decline, dementia, and movement disorders. TRIAD3A is an E3 ubiquitin ligase that recognizes and facilitates the ubiquitination of its target for degradation by the ubiquitin‐proteasome system (UPS). Here, we demonstrate that two of these missense substitutions in TRIAD3 (R660C and R694C) could not regulate the degradation of their neuronal target, activity‐regulated cytoskeletal‐associated protein (Arc/Arg 3.1), whose expression is critical for synaptic plasticity and memory. The synaptic deficits due to the loss of endogenous TRIAD3A could not be rescued by TRIAD3A harboring GHS‐associated missense mutations. Moreover, we demonstrate that the loss of endogenous TRIAD3A in the mouse hippocampal CA1 region led to deficits in spatial learning and memory. Finally, we show that these missense mutations abolished the interaction of TRIAD3A with Arc, disrupting Arc ubiquitination, and consequently Arc degradation. Our current findings of Arc misregulation by TRIAD3A variants suggest that loss‐of‐function mutations in TRIAD3A may contribute to dementia observed in patients with GHS driven by dysfunctional UPS components, leading to cognitive impairments through the synaptic protein Arc.  相似文献   

15.
The DNMT3B de novo DNA methyltransferase (DNMT) plays a major role in establishing DNA methylation patterns in early mammalian development, but its catalytic mechanism remains poorly characterized. Here, we provide a comprehensive biochemical analysis of human DNMT3B function through the characterization of a series of site-directed DNMT3B variants associated with immunodeficiency, centromere instability, and facial anomalies (ICF) syndrome. Our data reveal several novel and important aspects of DNMT3B function. First, DNMT3B, unlike DNMT3A, requires a DNA cofactor in order to stably bind to S-adenosyl-l-methionine (SAM), suggesting that it proceeds according to an ordered catalytic scheme. Second, ICF mutations cause a broad spectrum of biochemical defects in DNMT3B function, including defects in homo-oligomerization, SAM binding, SAM utilization, and DNA binding. Third, all tested ICF mutations, including the A766P and R840Q variants, result in altered catalytic properties without interfering with DNMT3L-mediated stimulation; this indicates that DNMT3L is not involved in the pathogenesis of ICF syndrome. Finally, our study reveals a novel level of coupling between substrate binding, oligomerization, and catalysis that is likely conserved within the DNMT3 family of enzymes.  相似文献   

16.
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloid leukaemia (AML); therefore, few data are available about its biology. Herein, we analysed two ABL patients using flow cytometry and next-generation sequencing (NGS). Two cell populations were detected by flow cytometry in both patients. In Case no. 1, blasts (CD34+, CD203c, CD117+, CD123dim+) and basophils (CD34, CD203c+, CD117±, CD123+) were identified, both of which were found by NGS to harbour the 17p deletion and have loss of heterozygosity of TP53. In Case no. 2, blasts (CD33+, CD34+, CD123) and basophils (CD33+, CD34+, CD123+) were identified. NGS detected NPM1 mutations in either blasts or basophils, and TET2 in both. These data suggest an overlap of the mutational landscape of ABL and AML, including TP53 and TET2 mutations. Moreover, additional mutations or epigenetic factors may contribute for the differentiation into basophilic blasts.  相似文献   

17.
Samples of constitutional DNA from 60 unrelated patients with adenomatous polyposis coli (APC) were examined for mutations in the APC gene. Five inactivating mutations were observed among 12 individuals with APC; all were different from the six inactivating mutations previously reported in this panel of patients. The newly discovered mutations included single-nucleotide substitutions leading to stop codons and small deletions leading to frameshifts. Two of the mutations were observed in multiple APC families and in sporadic cases of APC; allele-specific PCR primers were designed for detecting mutations at these common sites. No missense mutations that segregated with the disease were found.  相似文献   

18.
Cytogenetic studies were performed on 117 Tunisian patients with de novo myelodysplastic syndromes (MDS). According to the French-American-British (FAB) criteria 40 patients presented with refractory anaemia (RA, 34%), eight with refractory anaemia with ringed sideroblasts (RARAS, 7%), 19 with refractory anaemia with excess of blasts (RAEB, 16%), 16 with refractory anaemia with excess of blasts in transformation (RAEB-t, 14%), 18 had chronic myelomonocytic leukaemia (CMML, 15%) and 16 unclassifiable MDS (14%). Seventy-five were men and forty-two were women. Five were children and 112 were adults with a median age of 58 years. Fifty-five per cent of the patients presented clonal chromosome abnormalities. Rates of abnormality varied from one FAB subtype to the other: 55% in RA, 75% in RARAS, 63% in RAEB, 75% in RAEB-t and 28% in CMML. The most frequent chromosome abnormalities were del(5q) (22 cases), monosomy 7 (12 cases), del(12p) (6 cases), and trisomy 8 (5 cases). Rare abnormalities were also found: ring of chromosome 12 and trisomy 15. Conventional cytogenetics remains the basic technique in identifying chromosomal abnormalities associated with MDS.  相似文献   

19.
20.
Activity of peroxidase, superoxide dismutase and catalase were examined in leaves, stems and roots of olivacea ( oli ) and monstrosa ( mon ) mutants of Lycopersicon esculentum Mill. The extent of the difference between the pattern of oxidative enzyme activities of the wild type (wt) and the mutants was determined. The high peroxidase activity during the developmental stages of the leaves and stems of oli and mon phenotypes is associated with high levels of 4 anodic peroxidases in leaves and of two isozymes in the stem. Leaves of oli exhibit higher activity of the cathodic peroxidase C2, while both mutations have a marked increase of peroxidase C1 in stems. A positive relation between high peroxidase activity and oxidative stress damage was found: in chilling experiments at 5°C, peroxidase level in mutants and wt leaves was negatively correlated with electrolyte leakage. Superoxide dismutase (SOD) activity rises in oli stems around flowering time due to the high activity of the chloroplast forms SOD-1 and SOD-2. Catalases (CAT) were detectable only in early stages of plant development; CAT-2 was nearly absent in wild type tissues but well represented in mon and oli. The oli and mon mutations may affect critical steps of a regulatory pathway controlling various classes of oxidative enzymes in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号