首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The androgen receptor: a potential target for therapy of prostate cancer   总被引:7,自引:0,他引:7  
Santos AF  Huang H  Tindall DJ 《Steroids》2004,69(2):79-85
The androgen receptor plays a pivotal role in the prostate. Its primary function is to provide responsive gene products for differentiation and growth, but under abnormal conditions it contributes to the development of prostate cancer. The goal of this review is to elucidate the molecular functions of the androgen receptor and its role in prostate cancer. Initially the function of the androgen receptor will be described. Next, the clinical diagnosis, epidemiological impact, and treatments of androgen-dependent and -independent prostate cancer will be discussed. Finally we will examine how the mechanism of androgen action has played a role in the translation of new therapies and how this may influence future treatment modalities of prostate cancer.  相似文献   

2.
3.
4.
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.  相似文献   

5.
Alterations of androgen receptor in prostate cancer   总被引:5,自引:0,他引:5  
The significance of androgens in the development of prostate cancer has been known for more than half century. During the last decade, a lot of effort has been put to study the significance of the specific nuclear receptor of the hormone, androgen receptor (AR). It has been suggested that polymorphisms, especially the length of CAG repeat in exon 1 of the gene, are associated with the risk of prostate cancer. However, not all studies have confirmed the association. Most surprisingly, it has now become clear that prostate carcinomas emerging during the androgen withdrawal therapy (i.e. hormone-refractory tumors) are capable of reactivating the AR-mediated signalling despite of the low levels of androgens. In addition, it has been shown that AR gene itself is genetically targeted. One-third of the hormone-refractory prostate carcinomas contains amplification of the gene. In addition, 10-30% of prostate carcinomas treated by antiandrogens acquire point mutation in the AR gene. The genetic alterations in AR indicate that receptor should be considered as putative treatment target. Evidently, the currently available antiandrogens are not capable to abolish the AR-mediated signalling efficiently enough.  相似文献   

6.
7.
The association between the polymorphic CAG repeat in androgen receptor gene (AR) and prostate cancer susceptibility has been studied extensively. However, the results are contradictory. The purpose of our meta-analysis was to investigate whether CAG repeat related to prostate cancer risk and had genetic heterogeneity across different geographic regions and study designs. Random-effects model was performed irrespective of between-study heterogeneity. Data and study quality were assessed in duplicate. Publication bias was assessed by the fail-safe number and Egger’s test. There were 16 (patients/controls: 2972/3792), 19 (3835/4908) and 12 (3372/2631) study groups for comparisons of ≥20, 22 and 23 repeats of CAG sequence, respectively. Compared with CAG repeat <20, 22 or 23, carriers of ≥20, 22 or 23 repeats had 21% (95% CI: 0.61–1.02; P = 0.076), 5% (95% CI: 0.81–1.11; P = 0.508) and 5% (95% CI: 0.76–1.20; P = 0.681) decreased risk of prostate cancer. After classifying studies by geographic areas, carriers of ≥20 repeats had 11% decreased risk in populations from USA, 53% from Europe, and 20% from Asia (P > 0.05), whereas comparison of ≥23 repeats with others generated a significant prediction in European populations (OR = 1.17; P = 0.039). Stratification by study designs revealed no material changes in risk estimation. Meta-regression analysis found no significant sources of between-study heterogeneity for age, study design and geographic region for all comparisons. There was no identified publication bias. Taken together, our results demonstrated that AR CAG repeat polymorphism with ≥20 repeats might confer a protective effect among the prostate cancer patients with 45 years older but not all the prostate cancer patients.  相似文献   

8.
Removal of the basic piperazine nitrogen atom, introduction of a solubilising end group and partial reduction of the triazolopyridazine moiety in the previously-described lead androgen receptor downregulator 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (1) addressed hERG and physical property issues, and led to clinical candidate 6-(4-{4-[2-(4-acetylpiperazin-1-yl)ethoxy]phenyl}piperidin-1-yl)-3-(trifluoromethyl)-7,8-dihydro[1,2,4]triazolo[4,3-b]pyridazine (12), designated AZD3514, that is being evaluated in a Phase I clinical trial in patients with castrate-resistant prostate cancer.  相似文献   

9.
10.
Recently, we have identified serum response factor (SRF) as a mediator of clinically relevant androgen receptor (AR) action in prostate cancer (PCa). Genes that rely on SRF for androgen responsiveness represent a small fraction of androgen-regulated genes, but distinguish benign from malignant prostate, correlate with aggressive disease, and are associated with biochemical recurrence. Thus, understanding the mechanism(s) by which SRF conveys androgen regulation to its target genes may provide novel opportunities to target clinically relevant androgen signaling. Here, we show that the small GTPase ras homolog family member A (RhoA) mediates androgen-responsiveness of more than half of SRF target genes. Interference with expression of RhoA, activity of the RhoA effector Rho-associated coiled-coil containing protein kinase 1 (ROCK), and actin polymerization necessary for nuclear translocation of the SRF cofactor megakaryocytic acute leukemia (MAL) prevented full androgen regulation of SRF target genes. Androgen treatment induced RhoA activation, increased the nuclear content of MAL, and led to MAL recruitment to the promoter of the SRF target gene FHL2. In clinical specimens RhoA expression was higher in PCa cells than benign prostate cells, and elevated RhoA expression levels were associated with aggressive disease features and decreased disease-free survival after radical prostatectomy. Overexpression of RhoA markedly increased the androgen-responsiveness of select SRF target genes, in a manner that depends on its GTPase activity. The use of isogenic cell lines and a xenograft model that mimics the transition from androgen-stimulated to castration-recurrent PCa indicated that RhoA levels are not altered during disease progression, suggesting that RhoA expression levels in the primary tumor determine disease aggressiveness. Androgen-responsiveness of SRF target genes in castration-recurrent PCa cells continued to rely on AR, RhoA, SRF, and MAL and the presence of intact SRF binding sites. Silencing of RhoA, use of Rho-associated coiled-coil containing protein kinase 1 inhibitors, or an inhibitor of SRF-MAL interaction attenuated (androgen-regulated) cell viability and blunted PCa cell migration. Taken together, these studies demonstrate that the RhoA signaling axis mediates clinically relevant AR action in PCa.  相似文献   

11.
12.
Chemical starting points were investigated for downregulation of the androgen receptor as an approach to treatment of advanced prostate cancer. Although prototypic steroidal downregulators such as 6a designed for intramuscular administration showed insufficient cellular potency, a medicinal chemistry program derived from a novel androgen receptor ligand 8a led to 6-[4-(4-cyanobenzyl)piperazin-1-yl]-3-(trifluoromethyl)[1,2,4]triazolo[4,3-b]pyridazine (10b), for which high plasma levels following oral administration in a preclinical model compensate for moderate cellular potency.  相似文献   

13.
14.
15.
The actions of androgens, principally testosterone and 5alpha-dihydrotestosterone, are mediated by a specific receptor protein, the androgen receptor (AR), which is encoded by a single-copy gene located on the human X-chromosome. This receptor protein is a prototypical member of the nuclear receptor family and modulates a range of processes during embryogenesis and in the adult. During embryogenesis, normal AR function is critical to the development of the male phenotype and defects of the AR cause a range of phenotypic abnormalities of male sexual development. Complete loss of AR function has been traced to a number of distinct types of genetic events, including abnormalities of mRNA splicing, the introduction of premature termination codons, and amino acid substitution mutations. An interesting subset of mutations is that in which the AR is completely undetectable using sensitive immunoassays. In all instances, these functional abnormalities are associated with a phenotype of complete androgen insensitivity (complete testicular feminization). By contrast, partial defects of AR function are almost invariably caused by amino acid substitutions within the DNA- and hormone-binding domains of the receptor protein. Such partial defects of receptor function may be caused by changes in either receptor function or receptor abundance.The alterations of AR function and expression that have been characterized in clinical prostatic cancers and in prostate cancer cell lines differ in several important respects. A number of studies have documented the emergence of considerable heterogeneity of AR expression at early stages in the development of prostate cancer. Despite these early changes of AR expression, a substantial body of information suggests that the AR is expressed in advanced forms of prostate cancer, in some cases as the result of amplification events. While infrequent in localized tumors, mutations of the AR have been identified in a number of advanced prostatic cancers and in some instances appear to alter the ligand specificity of the AR. Finally, it appears that other signaling pathways can act to influence AR function.  相似文献   

16.
Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.  相似文献   

17.
Alimirah F  Chen J  Basrawala Z  Xin H  Choubey D 《FEBS letters》2006,580(9):2294-2300
The majority of human prostate cancer cell lines, including the two "classical" cell lines DU-145 and PC-3, are reported to be androgen receptor (AR)-negative. However, other studies have provided evidence that the DU-145 and PC-3 cell lines express AR mRNA. These contradictory observations prompted us to investigate whether DU-145 and PC-3 cell lines express the androgen receptor. Using antipeptide antibodies directed against three distinct regions of the human AR protein and an improved method to detect AR protein in immunoblotting, we report that DU-145 and PC-3 cell lines express AR protein. We found that the relative levels of the AR mRNA and protein that were detected in DU-145 and PC-3 cell lines were lower than the LNCaP, an AR-positive cell line. Moreover, the antibody directed against the non-variant region (amino acids 299-315), but not the variant N- or C-terminal region (amino acids 1-20 and 900-919, respectively) of the human AR protein, detected the expression of AR in all prostate cancer cell lines. Notably, treatment of these cell lines with dihydrotestosterone (DHT) resulted in measurable increases in the AR protein levels and considerable nuclear accumulation. Although, treatment of DU-145 and PC-3 cells with DHT did not result in stimulation of the activity of an AR-responsive reporter, knockdown of AR expression in PC-3 cells resulted in decreases in p21(CIP1) protein levels, and a measurable decrease in the activity of the p21-luc-reporter. Our observations demonstrate the expression of AR protein in DU-145 and PC-3 prostate cancer cell lines.  相似文献   

18.
A new series of androgen receptor targeted agents (ARTA) was prepared and tested in androgen-dependent and -independent prostate cancer cell lines. These agents were bicalutamide analogs with isothiocyanato substituted B-rings. Also, the linker sulfone of R-bicalutamide was maintained or replaced with several alternative linkages including ether, amine, N-methylamine, thioether, and methylene (in this case the product was a racemic mixture) functional groups at the X-position. To expand the structure-activity relationship (SAR) of these arylisothiocyanato AR ligands, B-ring halogenated arylisothiocyanato ligands were also prepared and tested. The arylisothiocyanato AR ligands showed strong binding affinities to AR ranging from 0.6 to 54 nM. Among them, thioether and ether linkages demonstrated high binding affinities (0.6 and 4.6 nM, respectively) and selective cell growth inhibition (approximately 3- to 6-fold) for LNCaP, an androgen-dependent prostate cancer cell line, when compared to the androgen independent prostate cell lines (DU145, PC-3, and PPC-1) and a bladder cell line (TSU-Pr1). However, the ligands were inactive (IC50>100 mM) in a normal monkey kidney cell line (CV-1) that was used as the control for non-specific toxicity.  相似文献   

19.
Prostate cancer is one of the most common malignancies, and microRNAs have been recognized to be involved in tumorigenesis of various kinds of cancer including prostate cancer (PCa). Androgen receptor (AR) plays a core role in prostate cancer progression and is responsible for regulation of numerous downstream targets including microRNAs. This study identified an AR-repressed microRNA, miR-421, in prostate cancer. Expression of miR-421 was significantly suppressed by androgen treatment, and correlated to AR expression in different prostate cancer cell lines. Furthermore, androgen-activated AR could directly bind to androgen responsive element (ARE) of miR-421, as predicted by bioinformatics resources and demonstrated by ChIP and luciferase reporter assays. In addition, over-expression of miR-421 markedly supressed cell viability, delayed cell cycle, reduced glycolysis and inhibited migration in prostate cancer cells. According to the result of miR-421 target genes searching, we focused on 4 genes NRAS, PRAME, CUL4B and PFKFB2 based on their involvement in cell proliferation, cell cycle progression and metabolism. The expression of these 4 downstream targets were significantly repressed by miR-421, and the binding sites were verified by luciferase assay. Additionally, we explored the expression of miR-421 and its target genes in human prostate cancer tissues, both in shared microarray data and in our own cohort. Significant differential expression and inverse correlation were found in PCa patients.  相似文献   

20.
Since androgen receptor (AR) plays an important role in prostate cancer development and progression, androgen-ablation has been the frontline therapy for treatment of advanced prostate cancer even though it is rarely curative. A curative strategy should involve functional and structural elimination of AR from prostate cancer cells. We have previously reported that apoptosis induced by medicinal proteasome-inhibitory compound celastrol is associated with a decrease in AR protein levels. However celastrol-stimulated events contributing to this AR decrease have not been elucidated. Here, we report that a variety of chemotherapeutic agents, including proteasome inhibitors, a topoisomerase inhibitor, DNA-damaging agents and docetaxel that cause cell death, decrease AR levels in LNCaP prostate cancer cells. This decrease in AR protein levels was not due to the suppression of AR mRNA expression in these cells. We observed that a proteolytic activity residing in cytosol of prostate cancer cells is responsible for AR breakdown and that this proteolytic activity was stimulated upon induction of apoptosis. Interestingly, proteasome inhibitor celastrol- and chemotherapeutic drug VP-16-stimulated AR breakdown was attenuated by calpain inhibitors calpastatin and N-acetyl-L-leucyl-L-leucyl-L-methioninal. Furthermore, AR proteolytic activity pulled down by calmodulin-agarose beads from celastrol-treated PC-3 cells showed immunoreactivity to a calpain antibody. Taken together, these results demonstrate calpain involvement in proteasome inhibitor-induced AR breakdown, and suggest that AR degradation is intrinsic to the induction of apoptosis in prostate cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号