首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Computational prediction methods are currently used to identify genes in prokaryote genomes. However, identification of the correct translation initiation sites remains a difficult task. Accurate translation initiation sites (TISs) are important not only for the annotation of unknown proteins but also for the prediction of operons, promoters, and small non-coding RNA genes, as this typically makes use of the intergenic distance. A further problem is that most existing methods are optimized for Escherichia coli data sets; applying these methods to newly sequenced bacterial genomes may not result in an equivalent level of accuracy.  相似文献   

2.

Background  

Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for improving the annotation of prokaryotic TIS. However, inherent difficulties of these approaches arise from the considerable variation of TIS characteristics across different species. Therefore prior assumptions about the properties of prokaryotic gene starts may cause suboptimal predictions for newly sequenced genomes with TIS signals differing from those of well-investigated genomes.  相似文献   

3.

Background  

Analysis of any newly sequenced bacterial genome starts with the identification of protein-coding genes. Despite the accumulation of multiple complete genome sequences, which provide useful comparisons with close relatives among other organisms during the annotation process, accurate gene prediction remains quite difficult. A major reason for this situation is that genes are tightly packed in prokaryotes, resulting in frequent overlap. Thus, detection of translation initiation sites and/or selection of the correct coding regions remain difficult unless appropriate biological knowledge (about the structure of a gene) is imbedded in the approach.  相似文献   

4.

Background  

The orthologs of eukaryotic initiation factor 5C (eIF5C) are essential to the initiation of protein translation, and their regulation during development is not well known.  相似文献   

5.

Background  

Utilization of alternative initiation sites for protein translation directed by non-AUG codons in mammalian mRNAs is observed with increasing frequency. Alternative initiation sites are utilized for the synthesis of important regulatory proteins that control distinct biological functions. It is, therefore, of high significance to define the parameters that allow accurate bioinformatic prediction of alternative translation initiation sites (aTIS). This study has investigated 5'-UTR regions of mRNAs to define consensus sequence properties and structural features that allow identification of alternative initiation sites for protein translation.  相似文献   

6.
7.

Background  

The mRNA translation initiation region (TIR) comprises the initiator codon, Shine-Dalgarno (SD) sequence and translational enhancers. Probably the most abundant class of enhancers contains A/U-rich sequences. We have tested the influence of SD sequence length and the presence of enhancers on the efficiency of translation initiation.  相似文献   

8.

Background  

The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions.  相似文献   

9.

Background  

The transition from growth to development in Dictyostelium is initiated by amino acid starvation of growing amobae. In other eukaryotes, a key sensor of amino acid starvation and mediator of the resulting physiological responses is the GCN2 protein, an eIF2α kinase. GCN2 downregulates the initiation of translation of bulk mRNA and enhances translation of specific mRNAs by phosphorylating the translation initiation factor eIF2α. Two eIF2α kinases were identified in Dictyostelium and studied herein.  相似文献   

10.
11.

Background

The quality of automated gene prediction in microbial organisms has improved steadily over the past decade, but there is still room for improvement. Increasing the number of correct identifications, both of genes and of the translation initiation sites for each gene, and reducing the overall number of false positives, are all desirable goals.

Results

With our years of experience in manually curating genomes for the Joint Genome Institute, we developed a new gene prediction algorithm called Prodigal (PROkaryotic DYnamic programming Gene-finding ALgorithm). With Prodigal, we focused specifically on the three goals of improved gene structure prediction, improved translation initiation site recognition, and reduced false positives. We compared the results of Prodigal to existing gene-finding methods to demonstrate that it met each of these objectives.

Conclusion

We built a fast, lightweight, open source gene prediction program called Prodigal http://compbio.ornl.gov/prodigal/. Prodigal achieved good results compared to existing methods, and we believe it will be a valuable asset to automated microbial annotation pipelines.  相似文献   

12.

Background  

Recent studies have demonstrated a selection pressure for reduced mRNA secondary-structure stability near the start codon of coding sequences. This selection pressure can be observed in bacteria, archaea, and eukaryotes, and is likely caused by the requirement of efficient translation initiation in cellular organism.  相似文献   

13.

Background  

This paper is an attempt to trace the evolution of the ribosome through the evolution of the universal P-loop GTPases that are involved with the ribosome in translation and with the attachment of the ribosome to the membrane. The GTPases involved in translation in Bacteria/Archaea are the elongation factors EFTu/EF1, the initiation factors IF2/aeIF5b + aeIF2, and the elongation factors EFG/EF2. All of these GTPases also contain the OB fold also found in the non GTPase IF1 involved in initiation. The GTPase involved in the signal recognition particle in most Bacteria and Archaea is SRP54.  相似文献   

14.
15.

Background  

Internal ribosomal entry sites (IRESs) provide alternative, cap-independent translation initiation sites in eukaryotic cells. IRES elements are important factors in viral genomes and are also useful tools for bi-cistronic expression vectors. Most existing RNA structure prediction programs are unable to deal with IRES elements.  相似文献   

16.

Background  

PCI/MPN domain protein complexes comprise the 19S proteasome lid, the COP9 signalosome (CSN), and eukaryotic translation initiation factor 3 (eIF3). The eIF3 complex is thought to be composed of essential core subunits required for global protein synthesis and non-essential subunits that may modulate mRNA specificity. Interactions of unclear significance were reported between eIF3 subunits and PCI proteins contained in the CSN.  相似文献   

17.

Background  

This paper discusses the problem of automated annotation. It is a continuation of the previous work on the A4-algorithm (Adaptive algorithm of automated annotation) developed by Leontovich and others.  相似文献   

18.

Background  

The translation start site plays an important role in the control of translation efficiency of eukaryotic mRNAs. The recognition of the start AUG codon by eukaryotic ribosomes is considered to depend on its nucleotide context. However, the fraction of eukaryotic mRNAs with the start codon in a suboptimal context is relatively large. It may be expected that mRNA should possess some features providing efficient translation, including the proper recognition of a translation start site. It has been experimentally shown that a downstream hairpin located in certain positions with respect to start codon can compensate in part for the suboptimal AUG context and also increases translation from non-AUG initiation codons. Prediction of such a compensatory hairpin may be useful in the evaluation of eukaryotic mRNA translation properties.  相似文献   

19.

Background  

Extracting biological information from high-density Affymetrix arrays is a multi-step process that begins with the accurate annotation of microarray probes. Shortfalls in the original Affymetrix probe annotation have been described; however, few studies have provided rigorous solutions for routine data analysis.  相似文献   

20.

Background  

The eukaryotic translation initiation factor 3 (eIF3) has multiple roles during the initiation of translation of cytoplasmic mRNAs. How individual subunits of eIF3 contribute to the translation of specific mRNAs remains poorly understood, however. This is true in particular for those subunits that are not conserved in budding yeast, such as eIF3h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号