首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li XJ 《Molecular neurobiology》1999,20(2-3):111-124
Huntington's disease (HD) is an inherited neurodegenerative disorder that affects about one in 10,000 individuals in North America. The genetic defect responsible for the disease is an expansion of a CAG repeat that encodes a polyglutamine tract in the expressed protein, huntingtin. The disease is characterized by involuntary movements, cognitive impairment, and emotional disturbance. Despite the widespread expression of huntingtin, the brains of HD patients show selective neuronal loss in the striatum and the deep layers of the cerebral cortex. Recent studies have shown that polyglutamine expansion causes huntingtin to aggregate, to accumulate in the nucleus, and to interact abnormally with other proteins. Several cellular and animal models for HD have revealed that intranuclear accumulation of mutant huntingtin and the formation of neuropil aggregates precede neurological symptoms and neurodegeneration. Intranuclear huntingtin may affect nuclear function and the expression of genes important for neuronal function, whereas neuropil aggregates may interfere with neuritic transport and function. These early pathological events, which occur in the absence of neurodegeneration, may contribute to the neurological symptoms of HD and ultimately lead to neuronal cell death.  相似文献   

2.
Huntington disease (HD) is a hereditary neurodegenerative disorder characterized by progressive cognitive, psychiatric, and motor symptoms. The disease is caused by abnormal expansion of CAG repeats in the gene encoding huntingtin, but how mutant huntingtin leads to early cognitive deficits in HD is poorly understood. Here, we demonstrate that the ubiquitin ligase Ube3a, which is implicated in synaptic plasticity and involved in the clearance of misfolded polyglutamine protein, is strongly recruited to the mutant huntingtin nuclear aggregates, resulting in significant loss of its functional pool in different regions of HD mouse brain. Interestingly, Arc, one of the substrates of Ube3a linked with synaptic plasticity, is also associated with nuclear aggregates, although its synaptic level is increased in the hippocampus and cortex of HD mouse brain. Different regions of HD mouse brain also exhibit decreased levels of AMPA receptors and various pre- and postsynaptic proteins, which could be due to the partial loss of function of Ube3a. Transient expression of mutant huntingtin in mouse primary cortical neurons further demonstrates recruitment of Ube3a into mutant huntingtin aggregates, increased accumulation of Arc, and decreased numbers of GluR1 puncta in the neuronal processes. Altogether, our results suggest that the loss of function of Ube3a might be associated with the synaptic abnormalities observed in HD.  相似文献   

3.
Butler DC  Messer A 《PloS one》2011,6(12):e29199
Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a trinucleotide (CAG)(n) repeat expansion in the coding sequence of the huntingtin gene, and an expanded polyglutamine (>37Q) tract in the protein. This results in misfolding and accumulation of huntingtin protein (htt), formation of neuronal intranuclear and cytoplasmic inclusions, and neuronal dysfunction/degeneration. Single-chain Fv antibodies (scFvs), expressed as intrabodies that bind htt and prevent aggregation, show promise as immunotherapeutics for HD. Intrastriatal delivery of anti-N-terminal htt scFv-C4 using an adeno-associated virus vector (AAV2/1) significantly reduces the size and number of aggregates in HDR6/1 transgenic mice; however, this protective effect diminishes with age and time after injection. We therefore explored enhancing intrabody efficacy via fusions to heterologous functional domains. Proteins containing a PEST motif are often targeted for proteasomal degradation and generally have a short half life. In ST14A cells, fusion of the C-terminal PEST region of mouse ornithine decarboxylase (mODC) to scFv-C4 reduces htt exon 1 protein fragments with 72 glutamine repeats (httex1-72Q) by ~80-90% when compared to scFv-C4 alone. Proteasomal targeting was verified by either scrambling the mODC-PEST motif, or via proteasomal inhibition with epoxomicin. For these constructs, the proteasomal degradation of the scFv intrabody proteins themselves was reduced<25% by the addition of the mODC-PEST motif, with or without antigens. The remaining intrabody levels were amply sufficient to target N-terminal httex1-72Q protein fragment turnover. Critically, scFv-C4-PEST prevents aggregation and toxicity of httex1-72Q fragments at significantly lower doses than scFv-C4. Fusion of the mODC-PEST motif to intrabodies is a valuable general approach to specifically target toxic antigens to the proteasome for degradation.  相似文献   

4.
The cause of Huntington's disease (HD) is a pathological expansion of the polyglutamine domain within the NH(2)-terminal region of huntingtin. Neuronal intranuclear inclusions and cytoplasmic aggregates composed of the mutant huntingtin within certain neuronal populations are a characteristic hallmark of HD. Because in vitro expanded polyglutamine repeats are glutaminyl-donor substrates of tissue transglutaminase (tTG), it has been hypothesized that tTG may contribute to the formation of these aggregates in HD. Therefore, it is of fundamental importance to establish whether tTG plays a significant role in the formation of mutant huntingtin aggregates in the cell. Human neuroblastoma SH-SY5Y cells were stably transfected with truncated NH(2)-terminal huntingtin constructs containing 18 (wild type) or 82 (mutant) glutamines. In the cells expressing the mutant truncated huntingtin construct, numerous SDS-resistant aggregates were present in the cytoplasm and nucleus. Even though numerous aggregates were present in the mutant huntingtin-expressing cells, tTG did not coprecipitate with mutant truncated huntingtin. Further, tTG was totally excluded from the aggregates, and significantly increasing tTG expression had no effect on the number of aggregates or their intracellular localization (cytoplasm or nucleus). When a YFP-tagged mutant truncated huntingtin construct was transiently transfected into cells that express no detectable tTG due to stable transfection with a tTG antisense construct, there was extensive aggregate formation. These findings clearly demonstrate that tTG is not required for aggregate formation, and does not facilitate the process of aggregate formation. Therefore, in HD, as well as in other polyglutamine diseases, tTG is unlikely to play a role in the formation of aggregates.  相似文献   

5.
Huntington's disease (HD) is caused by the expansion of a polyglutamine tract in the N-terminal region of huntingtin (htt) and is characterized by selective neurodegeneration. In addition to forming nuclear aggregates, mutant htt accumulates in neuronal processes as well as synapses and affects synaptic function. However, the mechanism for the synaptic toxicity of mutant htt remains to be investigated. We targeted fluorescent reporters for the ubiquitin-proteasome system (UPS) to presynaptic or postsynaptic terminals of neurons. Using these reporters and biochemical assays of isolated synaptosomes, we found that mutant htt decreases synaptic UPS activity in cultured neurons and in HD mouse brains that express N-terminal or full-length mutant htt. Given that the UPS is a key regulator of synaptic plasticity and function, our findings offer insight into the selective neuronal dysfunction seen in HD and also establish a method to measure synaptic UPS activity in other neurological disease models.  相似文献   

6.
Yamamoto A  Lucas JJ  Hen R 《Cell》2000,101(1):57-66
Neurodegenerative disorders like Huntington's disease (HD) are characterized by progressive and putative irreversible clinical and neuropathological symptoms, including neuronal protein aggregates. Conditional transgenic models of neurodegenerative diseases therefore could be a powerful means to explore the relationship between mutant protein expression and progression of the disease. We have created a conditional model of HD by using the tet-regulatable system. Mice expressing a mutated huntingtin fragment demonstrate neuronal inclusions, characteristic neuropathology, and progressive motor dysfunction. Blockade of expression in symptomatic mice leads to a disappearance of inclusions and an amelioration of the behavioral phenotype. We thus demonstrate that a continuous influx of the mutant protein is required to maintain inclusions and symptoms, raising the possibility that HD may be reversible.  相似文献   

7.
8.
Huntington's disease (HD) is caused by a mutation in the gene encoding for huntingtin resulting in selective neuronal degeneration. Because HD is an autosomal dominant disorder, affected individuals have one copy of the mutant and one copy of the wild-type allele. Huntingtin has antiapoptotic properties and is critical for cell survival. However, the important role of wild-type huntingtin in both HD and other neurological diseases has not been fully recognized. We demonstrate disease-associated decreased levels of full-length huntingtin in brains of transgenic mouse models of HD, ischemia, trauma, and in spinal cord after injury. In addition, overexpression of wild-type huntingtin confers in vivo protection of neurodegeneration after ischemia. We propose that in HD, in addition to a toxic gain-of-function of mutant huntingtin, a parallel depletion of wild-type huntingtin results in a detrimental loss-of-function, playing an important role in disease progression.  相似文献   

9.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.  相似文献   

10.
Huntington's disease (HD) is an inherited neurodegenerative disorder. Here we demonstrate that expression of arfaptin 2/POR1 (partner of Rac1) in cultured cells induces the formation of pericentriolar and nuclear aggregates, which morphologically resemble mutant huntingtin aggregates characteristic of HD. Endogenous arfaptin 2 localizes to aggregates induced by expression of an abnormal amino-terminal fragment of huntingtin that contains polyglutamine (polyQ) expansions. A dominant inhibitory mutant of arfaptin 2 inhibits aggregation of mutant huntingtin, but not in the presence of proteasome inhibitors. Using cell-free biochemical assays, we show that arfaptin 2 inhibits proteasome activity. Finally, we show that expression of arfaptin 2 is increased at sites of neurodegeneration and the protein localizes to huntingtin aggregates in HD transgenic mouse brains. Our data suggest that arfaptin 2 is involved in regulating huntingtin protein aggregation, possibly by impairing proteasome function.  相似文献   

11.
A unifying feature of the CAG expansion diseases is the formation of intracellular aggregates composed of the mutant polyglutamine-expanded protein. Despite the presence of aggregates in affected patients, the precise relationship between aggregates and disease pathogenesis is unresolved. Results from in vivo and in vitro studies of mutant huntingtin have led to the hypothesis that nuclear localization of aggregates is critical for the pathology of Huntington's disease (HD). We tested this hypothesis using a 293T cell culture model system by comparing the frequency and toxicity of cytoplasmic and nuclear huntingtin aggregates. Insertion of nuclear import or export sequences into huntingtin fragments containing 548 or 151 amino acids was used to reverse the normal localization of these proteins. Changing the subcellular localization of the fragments did not influence their total aggregate frequency. There were also no significant differences in toxicity associated with the presence of nuclear compared with cytoplasmic aggregates. These studies, together with findings in transgenic mice, suggest two phases for the pathogenesis of HD, with the initial toxicity in the cytoplasm followed by proteolytic processing of huntingtin, nuclear translocation with increased nuclear concentration of N-terminal fragments, seeding of aggregates and resultant apoptotic death. These findings support the nucleus and cytosol as subcellular sites for pathogenesis in HD.  相似文献   

12.
Although NH2-terminal mutant huntingtin (htt) fragments cause neurological disorders in Huntington's disease (HD), it is unclear how toxic htt fragments are generated and contribute to the disease process. Here, we report that complex NH2-terminal mutant htt fragments smaller than the first 508 amino acids were generated in htt-transfected cells and HD knockin mouse brains. These fragments constituted neuronal nuclear inclusions and appeared before neurological symptoms. The accumulation and aggregation of these htt fragments were associated with an age-dependent decrease in proteasome activity and were promoted by inhibition of proteasome activity. These results suggest that decreased proteasome activity contributes to late onset htt toxicity and that restoring the ability to remove NH2-terminal fragments will provide a more effective therapy for HD than inhibiting their production.  相似文献   

13.
The formation of intra-neuronal mutant protein aggregates is a characteristic of several human neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease (PD) and polyglutamine disorders, including Huntington's disease (HD). Autophagy is a major clearance pathway for the removal of mutant huntingtin associated with HD, and many other disease-causing, cytoplasmic, aggregate-prone proteins. Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) and can be induced in all mammalian cell types by the mTOR inhibitor rapamycin. It can also be induced by a recently described cyclical mTOR-independent pathway, which has multiple drug targets, involving links between Ca(2+)-calpain-G(salpha) and cAMP-Epac-PLC-epsilon-IP(3) signalling. Both pathways enhance the clearance of mutant huntingtin fragments and attenuate polyglutamine toxicity in cell and animal models. The protective effects of rapamycin in vivo are autophagy-dependent. In Drosophila models of various diseases, the benefits of rapamycin are lost when the expression of different autophagy genes is reduced, implicating that its effects are not mediated by autophagy-independent processes (like mild translation suppression). Also, the mTOR-independent autophagy enhancers have no effects on mutant protein clearance in autophagy-deficient cells. In this review, we describe various drugs and pathways inducing autophagy, which may be potential therapeutic approaches for HD and related conditions.  相似文献   

14.
DiFiglia M 《Molecular cell》2002,10(2):224-225
N-terminal region of mutant huntingtin forms intranuclear and cytoplasmic aggregates in neurons that may contribute to neuronal death in Huntington's disease. show that different endoprotease-cleaved huntingtin fragments form nuclear and cytoplasmic inclusions.  相似文献   

15.
Huntington''s Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice.  相似文献   

16.
17.
Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington''s disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington''s disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death.  相似文献   

18.
Proteolytic processing of mutant huntingtin (mhtt) is regarded as a key event in the pathogenesis of Huntington's disease (HD). Mhtt fragments containing a polyglutamine expansion form intracellular inclusions and are more cytotoxic than full-length mhtt. Here, we report that two distinct mhtt fragments, termed cp-A and cp-B, differentially build up nuclear and cytoplasmic inclusions in HD brain and in a cellular model for HD. Cp-A is released by cleavage of htt in a 10 amino acid domain and is the major fragment that aggregates in the nucleus. Furthermore, we provide evidence that cp-A and cp-B are most likely generated by aspartic endopeptidases acting in concert with the proteasome to ensure the normal turnover of htt. These proteolytic processes are thus potential targets for therapeutic intervention in HD.  相似文献   

19.
Formation of cytoplasmic and nuclear aggregates is a hallmark of Huntington’s disease (HD). Inhibition of aggregation of mutant huntingtin has been suggested to be a feasible approach to slow down the progress of this neurodegenerative disorder. Exposure to environmental stimuli leads to the activation of the stress response machinery of the cell. In this work, we have investigated the effect of salt shock on the aggregation of mutant huntingtin (103Q-htt) in a yeast model of HD. We found that at an optimum concentration of NaCl, the protein no longer formed aggregates and existed in the soluble form. This led to lower oxidative stress in the cell. Salt shock resulted in the synthesis of the osmolyte glycerol, which was partially responsible for the beneficial effect of stress. Surprisingly, we also found increase in the synthesis of another osmolyte, trehalose. Using deletion strains, we were able to show that the effect on solubilisation of mutant huntingtin is due to the synthesis of optimum amounts of both osmolytes. Stress-induced effect was monitored on gene expression. Genes related to proteins of the osmosensory pathway were upregulated on exposure to salt while those coding for stress response proteins were downregulated when solubilisation of mutant huntingtin occurred. Our study shows that activation of stress response elements can have beneficial effect in the solubilisation of huntingtin in a yeast model of HD.  相似文献   

20.
We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntington's disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号