首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The analysis of meiosis in higher plants has benefited considerably in recent years from the completion of the genome sequence of the model plant Arabidopsis thaliana and the development of cytological techniques for this species. A combination of forward and reverse genetics has provided important routes toward the identification of meiotic genes in Arabidopsis. Nevertheless identification of certain meiotic genes remains a challenge due to problems such as limited sequence conservation between species, existence of closely related gene families and in some cases functional redundancy between gene family members. Hence there is a requirement to develop new experimental approaches that can be used in conjunction with existing methods to enable a greater range of plant meiotic genes to be identified. As one potential route towards this goal we have initiated a proteomics-based approach. Unfortunately, the small size of Arabidopsis anthers makes an analysis in this species technically very difficult. Therefore we have initially focussed on Brassica oleracea which is closely related to Arabidopsis, but has the advantage of possessing significantly larger anthers. The basic strategy has been to use peptide mass-finger printing and matrix-assisted laser desorption ionization time of flight mass spectrometry to analyse proteins expressed in meiocytes during prophase I of meiosis. Initial experiments based on the analysis of proteins from staged anther tissue proved disappointing due to the low level of detection of proteins associated with meiosis. However, by extruding meiocytes in early prophase I from individual anthers prior to analysis a significant enrichment of meiotic proteins has been achieved. Analysis suggests that at least 18% of the proteins identified by this route have a putative meiotic function and that this figure could be as high as one-third of the total. Approaches to increase the enrichment of proteins involved in meiotic recombination and chromosome synapsis are also described.  相似文献   

2.
We have identified a plant homologue of the Drosophila meiotic gene Pelota in Arabidopsis thaliana (AtPelota1). This gene maps to chromosome 4 of Ara- bidopsis and is one of two Pelota homologues present in this plant. When the expression pattern of AtPelota1 was examined it was found to be expressed at similar levels in all plant tissues tested (whole plant, bud, stem, leaf and root). This expression pattern corresponds to that seen for some other Arabidopsis meiotic genes and their homologues. A search of the databases reveal that the AtPelota gene family is widespread with homologues present in higher and lower eukaryotes and archaebacteria, but not eubacteria. Received: 13 December 1999 / Accepted: 27 December 1999  相似文献   

3.
4.
5.
6.
7.
Evidence is now increasing that many functions and processes of meiotic genes are similar in yeast and higher eukaryotes. However, there are significant differences and, most notably, yeast has considerably higher recombination frequencies than higher eukaryotes, different cross-over interference and possibly more than one pathway for recombination, one late and one early. Other significant events are the timing of double-strand breaks (induced by Spo11) that could be either cause or consequence of homologous chromosome synapsis and SC formation depending on the organisms, yeast plants and mammals versus Drosophila melanogaster and Caenorhabditis elegans. Many plant homologues and heterologues to meiotic genes of yeast and other organisms have now been isolated, in particular in Arabidopsis thaliana, showing that overall recombination genes are very conserved while synaptonemal complex and cohesion proteins are not. In addition to the importance of unravelling the meiotic processes by gene discovery, this review discusses the significance of chromatin packaging, genome organization, and distribution of specific repeated DNA sequences for homologous chromosome cognition and pairing, and the distribution of recombination events along the chromosomes.  相似文献   

8.
9.
Meiosis is a central feature of sexual reproduction. Studies in plants have made and continue to make an important contribution to fundamental research aimed at the understanding of this complex process. Moreover, homologous recombination during meiosis provides the basis for plant breeders to create new varieties of crops. The increasing global demand for food, combined with the challenges from climate change, will require sustained efforts in crop improvement. An understanding of the factors that control meiotic recombination has the potential to make an important contribution to this challenge by providing the breeder with the means to make fuller use of the genetic variability that is available within crop species. Cytogenetic studies in plants have provided considerable insights into chromosome organization and behaviour during meiosis. More recently, studies, predominantly in Arabidopsis thaliana, are providing important insights into the genes and proteins that are required for crossover formation during plant meiosis. As a result, substantial progress in the understanding of the molecular mechanisms that underpin meiosis in plants has begun to emerge. This article summarizes current progress in the understanding of meiotic recombination and its control in Arabidopsis. We also assess the relationship between meiotic recombination in Arabidopsis and other eukaryotes, highlighting areas of close similarity and apparent differences.  相似文献   

10.
Monocotyledons and dicotyledons are distinct, not only in their body plans and developmental patterns, but also in the structural features of their cell walls. The recent completion of the rice (Oryza sativa) genomic sequence and publication of the sequence data, together with the completed database of the Arabidopsis thaliana genome, provide the first opportunity to compare the full complement of cell-wall-related genes from the two distinct classes of flowering plants. We made this comparison by exploiting the fact that Arabidopsis and rice have type I and type II walls, respectively, and therefore represent the two extremes in terms of the structural features of plant cell walls. In this review article, we classify all cell-wall-related genes into 32 gene families, and generate their phylogenetic trees. Using these data, we can phylogenetically compare individual genes of particular interest between Arabidopsis and rice. This comparative genome approach shows that the differences in wall architecture in the two plant groups actually mirror the diversity of the individual gene families involved in the cell-wall dynamics of the respective plant species. This study also identifies putative rice orthologs of genes with well-defined functions in Arabidopsis and other plant species.  相似文献   

11.
12.
Azumi Y  Liu D  Zhao D  Li W  Wang G  Hu Y  Ma H 《The EMBO journal》2002,21(12):3081-3095
Interactions between homologs in meiotic prophase I, such as recombination and synapsis, are critical for proper homolog segregation and involve the coordination of several parallel events. However, few regulatory genes have been identified; in particular, it is not clear what roles the proteins similar to the mitotic cell cycle regulators might play during meiotic prophase I. We describe here the isolation and characterization of a new Arabidopsis mutant called solo dancers that exhibits a severe defect in homolog synapsis, recombination and bivalent formation in meiotic prophase I, subsequently resulting in seemingly random chromosome distribution and formation of abnormal meiotic products. We further demonstrate that the mutation affects a meiosis-specific gene encoding a novel protein of 578 amino acid residues with up to 31% amino acid sequence identity to known cyclins in the C-terminal portion. These results argue strongly that homolog interactions during meiotic prophase I require a novel meiosis-specific cyclin in Arabidopsis.  相似文献   

13.
Structure and Evolution of the Actin Gene Family in Arabidopsis Thaliana   总被引:1,自引:0,他引:1  
Higher plants contain families of actin-encoding genes that are divergent and differentially expressed. Progress in understanding the functions and evolution of plant actins has been hindered by the large size of the actin gene families. In this study, we characterized the structure and evolution of the actin gene family in Arabidopsis thaliana. DNA blot analyses with gene-specific probes suggested that all 10 of the Arabidopsis actin gene family members have been isolated and established that Arabidopsis has a much simpler actin gene family than other plants that have been examined. Phylogenetic analyses suggested that the Arabidopsis gene family contains at least two ancient classes of genes that diverged early in land plant evolution and may have separated vegetative from reproductive actins. Subsequent divergence produced a total of six distinct subclasses of actin, and five showed a distinct pattern of tissue specific expression. The concordance of expression patterns with the phylogenetic structure is discussed. These subclasses appear to be evolving independently, as no evidence of gene conversion was found. The Arabidopsis actin proteins have an unusually large number of nonconservative amino acid substitutions, which mapped to the surface of the actin molecule, and should effect protein-protein interactions.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) cascades have been implicated in regulating various aspects of plant development, including somatic cytokinesis. The evolution of expanded plant MAPK gene families has enabled the diversification of potential MAPK cascades, but functionally overlapping components are also well documented. Here we report that Arabidopsis MPK4, an MAPK that was previously described as a regulator of disease resistance, can interact with and be phosphorylated by the cytokinesis-related MAP kinase kinase, AtMKK6. In mpk4 mutant plants, anthers can develop normal microspore mother cells (MMCs) and peripheral supporting tissues, but the MMCs fail to form a normal intersporal callose wall after male meiosis, and thus cannot complete meiotic cytokinesis. Nevertheless, the multinucleate mpk4 microspores subsequently proceed through mitotic cytokinesis, resulting in enlarged mature pollen grains that possess increased sets of the tricellular structure. This pollen development phenotype is reminiscent of those observed in both atnack2/tes/stud and anq1/mkk6 mutants, and protein-protein interaction analysis defines a putative signalling module linking AtNACK2/TES/STUD, AtANP3, AtMKK6 and AtMPK4 together as a cascade that facilitates male-specific meiotic cytokinesis in Arabidopsis.  相似文献   

15.
RNA干扰是真核生物中相对保守的一种基因特录后表达调控机制,它通过双链RNA介导细胞内mRNA发生特异性降解或翻译抑制,从而调控靶基因的表达.对丝状真菌中RNA压制和减数分裂沉默等现象的研究表明,与动、植物一样,丝状真菌中也存在RNA干扰现象.通过对RNA压制缺失突变株和减教分裂沉默缺失突变株的一系列分子生物学研究,获得了与之密切相关的一系列蛋白,而这些蛋白在结构和功能上与动、植物RNA干扰途径的蛋白高度相似,这些结果证明了丝状真菌中的RNA存在干扰现象.RNA干扰技术作为丝状真菌分子生物学研究或遗传改造的工具具有特殊的意义,因为丝状真菌具有多核和发生非同源重组频率高的特点,难以用基因敲除手段进行改造.系统地介绍丝状真菌中的RNA干扰途径以及使用RNA干扰对真菌进行遗传改造的方法.  相似文献   

16.
17.
18.
R Alvarez-Venegas  Z Avramova 《Gene》2001,271(2):215-221
Two Arabidopsis genes have been characterized as first examples of plant genes homologous to the animal trithorax genes. The Arabidopsis genes are highly similar but display different tissue and development expression patterns. One of them was ubiquitously expressed, with highest levels registered in young seedlings. The other gene was less active in all tested tissues, was not expressed in mature leaves but was highly expressed in roots. A new structural motif common to all TRX-related proteins has been identified. This new architectural element was found only in genes of multicellular species and is present in all genes belonging to the trithorax family. Along with the SET domain and the PHD fingers, this new element is a signature feature for the trithorax gene family.  相似文献   

19.
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.  相似文献   

20.
Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of doubie-HoUiday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号