首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP-induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2-Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2-Rho1 pathway.  相似文献   

2.
We address the relative roles of astral and central spindle microtubules (MTs) in cytokinesis of Drosophila melanogaster primary spermatocytes. Time-lapse imaging studies reveal that the central spindle is comprised of two MT populations, "interior" central spindle MTs found within the spindle envelope and "peripheral" astral MTs that probe the cytoplasm and initiate cleavage furrows where they contact the cortex and form overlapping bundles. The MT-associated protein Orbit/Mast/CLASP concentrates on interior rather than peripheral central spindle MTs. Interior MTs are preferentially affected in hypomorphic orbit mutants, and consequently the interior central spindle fails to form or is unstable. In contrast, peripheral MTs still probe the cortex and form regions of overlap that recruit the Pav-KLP motor and Aurora B kinase. orbit mutants have disorganized or incomplete anillin and actin rings, and although cleavage furrows initiate, they ultimately regress. Our work identifies a new function for Orbit/Mast/CLASP and identifies a novel MT population involved in cleavage furrow initiation.  相似文献   

3.
Alpha-actinin localization in the cleavage furrow during cytokinesis   总被引:24,自引:18,他引:6  
We used antibodies against alpha-actinin and myosin labeled directly with contrasting fluorochromes to localize these contractile proteins simultaneously in dividing chick embryo cells. During mitosis anti-alpha-actinin stains diffusely the entire cytoplasm including the mitotic spindle, while in the same cells intense antimyosin staining delineates the spindle. During cytokinesis both antibodies stain the cleavage furrow intensely, and until the midbody forms the two staining patterns in the same cell are identical at the resolution of the light microscope. Thereafter the anti-alpha-actinin staining of the furrow remains strong, but the antimyosin staining diminishes. These observations suggest that alpha-actinin participates along with actin and myosin in the membrane movements associated with cytokinesis.  相似文献   

4.
The inner centromeric protein (INCENP) and other chromosomal passenger proteins are known to localize on the cleavage furrow and to play a role in cytokinesis. However, it is not known how INCENP localizes on the furrow or whether this localization is separable from that at the midbody. Here, we show that the association of Dictyostelium INCENP (DdINCENP) with the cortex of the cleavage furrow involves interactions with the actin cytoskeleton and depends on the presence of the kinesin-6-related protein Kif12. We found that Kif12 is found on the central spindle and the cleavage furrow during cytokinesis. Kif12 is not required for the redistribution of DdINCENP from centromeres to the central spindle. However, in the absence of Kif12, DdINCENP fails to localize on the cleavage furrow. Domain analysis indicates that the N terminus of DdINCENP is necessary and sufficient for furrow localization and that it binds directly to the actin cytoskeleton. Our data suggest that INCENP moves from the central spindle to the furrow of a dividing cell by a Kif12-dependent pathway. Once INCENP reaches the equatorial cortex, it associates with the actin cytoskeleton where it then concentrates toward the end of cytokinesis.  相似文献   

5.
The ARF6 GTPase mediates cell shape changes in interphase cells through its effects on membrane cycling and actin remodeling. In this study, we focus our attention on the dynamics of cell division and present evidence supporting a novel role for ARF6 during cleavage furrow ingression and cytokinesis. We demonstrate that endogenous ARF6 redistributes during mitosis and concentrates near the cleavage furrow during telophase. Constitutively activated ARF6 localizes to the plasma membrane at the site of cleavage furrow ingression and midbody formation, and dominant negative ARF6 remains cytoplasmic. By using a novel pull-down assay for ARF6-GTP, we find an abrupt, but transient, increase in ARF6-GTP levels as cells progress through cytokinesis. Whereas high levels of expression of a GTPase-defective ARF6 mutant induce aberrant phenotypes in cells at cytokinesis, cells expressing low levels of ARF6 mutants do not display a significant mitotic delay or cytokinesis defect, presumably due to compensatory or redundant mechanisms that allow cytokinesis to proceed when the ARF6 GTPase cycle is disrupted. Finally, actin accumulation and phospholipid metabolism at the cleavage furrow are unchanged in cells expressing ARF6 mutants, suggesting that ARF6 may be involved in membrane remodeling during cytokinesis via effector pathways that are distinct from those operative in interphase cells.  相似文献   

6.
The cleavage-furrow tip adjacent to the actomyosin contractile ring is believed to be the predominant site for plasma-membrane insertion through exocyst-tethered vesicles during cytokinesis. Here we found that most secretory vesicles are delivered by myosin-V on linear actin cables in fission yeast cytokinesis. Surprisingly, by tracking individual exocytic and endocytic events, we found that vesicles with new membrane are deposited to the cleavage furrow relatively evenly during contractile-ring constriction, but the rim of the cleavage furrow is the main site for endocytosis. Fusion of vesicles with the plasma membrane requires vesicle tethers. Our data suggest that the transport particle protein II (TRAPP-II) complex and Rab11 GTPase Ypt3 help to tether secretory vesicles or tubulovesicular structures along the cleavage furrow while the exocyst tethers vesicles at the rim of the division plane. We conclude that the exocyst and TRAPP-II complex have distinct localizations at the division site, but both are important for membrane expansion and exocytosis during cytokinesis.  相似文献   

7.
In cytokinesis, the contractile ring constricts the cleavage furrow. However, the formation and properties of the contractile ring are poorly understood. Fimbrin has two actin-binding domains and two EF-hand Ca(2+)-binding motifs. Ca(2+) binding to the EF-hand motifs inhibits actin-binding activity. In Tetrahymena, fimbrin is localized in the cleavage furrow during cytokinesis. In a previous study, Tetrahymena fimbrin was purified with an F-actin affinity column. However, the purified Tetrahymena fimbrin was broken in to a 60 kDa fragment of a 70 kDa full length fimbrin. In this study, we investigated the properties of recombinant Tetrahymena fimbrin. In an F-actin cosedimentation assay, Tetrahymena fimbrin bound to F-actin and bundled it in a Ca(2+)-independent manner, with a K(d) of 0.3 micro M and a stoichiometry at saturation of 1:1.4 (Tetrahymena fimbrin: actin). In the presence of 1 molecule of Tetrahymena fimbrin to 7 molecules of actin, F-actin was bundled. Immunofluorecence microscopy showed that a dotted line of Tetrahymena fimbrin along the cleavage furrow formed a ring structure. The properties and localization of Tetrahymena fimbrin suggest that it bundles actin filaments in the cleavage furrow and plays an important role in contractile ring formation during cytokinesis.  相似文献   

8.
The fact that substrate-anchored Dictyostelium cells undergo cytokinesis in the absence of myosin II underscores the importance of other proteins in enabling the cleavage furrow to constrict. Cortexillins, a pair of actin-bundling proteins, are required for normal cleavage. They are targeted to the incipient furrow in wild-type and, more prominently, in myosin II-null cells. No other F-actin bundling or cross-linking protein tested is co-localized. Green fluorescent protein fusions show that the N-terminal actin-binding domain of cortexillin I is dispensable and the C-terminal region is sufficient for translocation to the furrow and the rescue of cytokinesis. Cortexillins are suggested to have a targeting signal for coupling to a myosin II-independent system that directs transport of membrane proteins to the cleavage furrow.  相似文献   

9.
During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody.  相似文献   

10.
The mitotic spindle provides the spatial cue that coordinates cytokinesis with nuclear division. However, the specific property of the mitotic spindle that mediates this spatial regulation remains obscure, in part because different aspects of the mitotic spindle appear to have furrow inducing activity in different systems. We show that in C. elegans embryos, although the central spindle is usually dispensable for furrow initiation, it becomes essential for furrow formation when the extent of centrosome separation during anaphase is reduced. Measurements of microtubule density demonstrate that furrow formation occurs in the vicinity of a local minimum of microtubule density. Reduction of the extent of spindle elongation or disruption of the central spindle causes delayed formation of the cleavage furrow. These data suggest that reduced microtubule density triggers cleavage furrow initiation and demonstrate that redundant mechanisms direct efficient formation of the cleavage furrow.  相似文献   

11.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

12.
BACKGROUND: The terminal phase of cytokinesis in eukaryotic cells involves breakage of the intercellular canal containing the spindle midzone and resealing of the daughter cells. Recent observations suggest that the spindle midzone is required for this process. In this study, we investigated the possibility that targeted secretion in the vicinity of the spindle midzone is required for the execution of the terminal phase of cytokinesis. RESULTS: We inhibited secretion in early C. elegans embryos by treatment with brefeldin A (BFA). Using 4D recordings of dividing cells, we showed that BFA induced stereotyped failures in the terminal phase of cytokinesis; although the furrow ingressed normally, after a few minutes the furrow completely regressed, even though spindle midzone and midbody microtubules appeared normal. In addition, using an FM1-43 membrane probe, we found that membrane accumulated locally at the apices of the late cleavage furrows that form the persisting intercellular canals between daughter cells. However, in BFA-treated embryos this membrane accumulation did not occur, which possibly accounts for the observed cleavage failures. CONCLUSIONS: We have shown that BFA disrupts the terminal phase of cytokinesis in the embryonic blastomeres of C. elegans. We observed that membrane accumulates at the apices of the late cleavage furrow by means of a BFA-sensitive mechanism. We suggest that this local membrane accumulation is necessary for the completion of cytokinesis and speculate that the spindle midzone region of animal cells is functionally equivalent to the phragmoplast of plants and acts to target secretion to the equatorial plane of a cleaving cell.  相似文献   

13.
The dramatic cell shape changes during cytokinesis require the interplay between microtubules and the actomyosin contractile ring, and addition of membrane to the plasma membrane. Numerous membrane-trafficking components localize to the central spindle during cytokinesis, but it is still unclear how this machinery is targeted there and how membrane trafficking is coordinated with cleavage furrow ingression. Here we use an arf6 null mutant to show that the endosomal GTPase ARF6 is required for cytokinesis in Drosophila spermatocytes. ARF6 is enriched on recycling endosomes at the central spindle, but it is required neither for central spindle nor actomyosin contractile ring assembly, nor for targeting of recycling endosomes to the central spindle. However, in arf6 mutants the cleavage furrow regresses because of a failure in rapid membrane addition to the plasma membrane. We propose that ARF6 promotes rapid recycling of endosomal membrane stores during cytokinesis, which is critical for rapid cleavage furrow ingression.  相似文献   

14.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

15.
Calmodulin is a major cytoplasmic calcium receptor that performs multiple functions in the cell including cytokinesis. Central spindle appears between separating chromatin masses after metaphase-anaphase transition. The interaction of microtubules from central spindle with cell cortex regulates the cleavage furrow formation. In this paper, we use green fluorescence protein (GFP)-tagged calmodulin as a living cell probe to examine the detailed dynamic redistribution and co-localization of calmodulin with central spindle during cytokinesis and the function of this distribution pattern in a tripolar HeLa cell model. We found that calmodulin is associated with spindle microtubules during mitosis and begins to aggregate with central spindle after anaphase initiation. The absence of either central spindle or central spindle-distributed calmodulin is correlated with the defect in the formation of cleavage furrow, where contractile ring-distributed CaM is also extinct. Further analysis found that both the assembly of central spindle and the formation of cleavage furrow are affected by the W7 treatment. The microtubule density of central spindle was decreased after the treatment. Only less than 10% of the synchronized cells enter cytokinesis when treated with 25 microM W7, and the completion time of furrow regression is also delayed from 10 min to at least 40 min. It is suggested that calmodulin plays a significant role in cytokinesis including furrow formation and regression, The understanding of the interaction between calmodulin and microtubules may give us insight into the mechanism through which calmodulin regulates cytokinesis.  相似文献   

16.
Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.  相似文献   

17.
Cytokinesis is the final stage in cell division that serves to partition cytoplasm and daughter nuclei into separate cells. Membrane remodeling at the cleavage plane is a required feature of cytokinesis in many species. In animal cells, however, the precise mechanisms and molecular interactions that mediate this process are not yet fully understood. Using real-time imaging in live, early stage zebrafish embryos, we demonstrate that vesicles labeled with the v-SNARE, VAMP-2, are recruited to the cleavage furrow during deepening in a microtubule-dependent manner. These vesicles then fuse with, and transfer their VAMP-2 fluorescent label to, the plasma membrane during both furrow deepening and subsequent apposition. This observation indicates that new membrane is being inserted during these stages of cytokinesis. Inhibition of SNAP-25 (a cognate t-SNARE of VAMP-2), using a monoclonal antibody, blocked VAMP-2 vesicle fusion and furrow apposition. Transient expression of mutant forms of SNAP-25 also produced defects in furrow apposition. SNAP-25 inhibition by either method, however, did not have any significant effect on furrow deepening. Thus, our data clearly indicate that VAMP-2 and SNAP-25 play an essential role in daughter blastomere apposition, possibly via the delivery of components that promote the cell-to-cell adhesion required for the successful completion of cytokinesis. Our results also support the idea that new membrane addition, which occurs during late stage cytokinesis, is not required for furrow deepening that results from contractile band constriction.  相似文献   

18.
Hill E  Clarke M  Barr FA 《The EMBO journal》2000,19(21):5711-5719
The Rab6-binding kinesin, Rab6-KIFL, was identified in a two-hybrid screen for proteins that interact with Rab6, a small GTPase involved in membrane traffic through the Golgi apparatus. We find that Rab6-KIFL accumulates in mitotic cells where it localizes to the midzone of the spindle during anaphase, and to the cleavage furrow and midbody during telophase. Overexpression of Rab6-KIFL causes a cell division defect resulting in cell death. Microinjection of antibodies to Rab6-KIFL results in the cells becoming binucleate after one cell cycle, and time-lapse microscopy reveals that this is due to a defect in cleavage furrow formation and thus cytokinesis. These data show that endogenous Rab6-KIFL functions in cell division during cleavage furrow formation and cytokinesis, in addition to its previously described role in membrane traffic.  相似文献   

19.
An integral part of cell division is the separation of daughter cells via cytokinesis. There is now good evidence that the completion of cytokinesis requires coordinated membrane trafficking to deliver new membrane to the tip of the furrow and to complete the abscission. Here we have examined membrane traffic in cytokinesis and describe several novel observations. First, we show that Rab11- and FIP3-containing recycling endosomes accumulate near the cleavage furrow and are required for successful completion of cytokinesis. Second, we demonstrate that the Rab11-FIP3 protein complex is intimately involved in the delivery of endosomes to the cleavage furrow. Significantly, although FIP3 recruitment to endosomes is Rab11 dependent, we find that the targeting of FIP3 to the midbody is independent of Rab11. Third, we show that the Rab11-FIP3 complex is required for a late stage of cytokinesis, possibly abscission. Finally, we demonstrate that localization of FIP3 is subject to substantial spatial and temporal regulation. These data provide the first detailed analysis of recycling endosomes in cell division and provide a new model for membrane traffic to the furrow. We propose that the dynamic Rab11-FIP3 interaction controls the delivery, targeting, and fusion of recycling endosomes with furrow during late cytokinesis and abscission.  相似文献   

20.
Cytokinesis involves the concerted efforts of the microtubule and actin cytoskeletons as well as vesicle trafficking and membrane remodeling to form the cleavage furrow and complete daughter cell separation. The exact mechanisms that support membrane remodeling during cytokinesis remain largely undefined. In this study, we report that the large GTPase dynamin, a protein involved in membrane tubulation and vesiculation, is essential for successful cytokinesis. Using biochemical and morphological methods, we demonstrate that dynamin localizes to the spindle midzone and the subsequent intercellular bridge in mammalian cells and is also enriched in spindle midbody extracts. In Caenorhabditis elegans, dynamin localized to newly formed cleavage furrow membranes and accumulated at the midbody of dividing embryos in a manner similar to dynamin localization in mammalian cells. Further, dynamin function appears necessary for cytokinesis, as C. elegans embryos from a dyn-1 ts strain, as well as dynamin RNAi-treated embryos, showed a marked defect in the late stages of cytokinesis. These findings indicate that, during mitosis, conventional dynamin is recruited to the spindle midzone and the subsequent intercellular bridge, where it plays an essential role in the final separation of dividing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号