首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Gating induces a conformational change in the outer vestibule of ENaC   总被引:3,自引:0,他引:3  
The epithelial Na(+) channel (ENaC) is comprised of three homologous subunits (alpha, beta, and gamma). The channel forms the pathway for Na(+) absorption in the kidney, and mutations cause disorders of Na(+) homeostasis. However, little is known about the mechanisms that control the gating of ENaC. We investigated the gating mechanism by introducing bulky side chains at a position adjacent to the extracellular end of the second membrane spanning segment (549, 520, and 529 in alpha, beta, and gammaENaC, respectively). Equivalent "DEG" mutations in related DEG/ENaC channels in Caenorhabditis elegans cause swelling neurodegeneration, presumably by increasing channel activity. We found that the Na(+) current was increased by mutagenesis or chemical modification of this residue and adjacent residues in alpha, beta, and gammaENaC. This resulted from a change in the gating of ENaC; modification of a cysteine at position 520 in betaENaC increased the open state probability from 0. 12 to 0.96. Accessibility to this side chain from the extracellular side was state-dependent; modification occurred only when the channel was in the open conformation. Single-channel conductance decreased when the side chain contained a positive, but not a negative charge. However, alterations in the side chain did not alter the selectivity of ENaC. This is consistent with a location for the DEG residue in the outer vestibule. The results suggest that channel gating involves a conformational change in the outer vestibule of ENaC. Disruption of this mechanism could be important clinically since one of the mutations that increased Na(+) current (gamma(N530K)) was identified in a patient with renal disease.  相似文献   

2.
The Epithelial Na(+) Channel (ENaC) is an apical heteromeric channel that mediates Na(+) entry into epithelial cells from the luminal cell surface. ENaC is activated by proteases that interact with the channel during biosynthesis or at the extracellular surface. Meprins are cell surface and secreted metalloproteinases of the kidney and intestine. We discovered by affinity chromatography that meprins bind γ-ENaC, a subunit of the ENaC hetero-oligomer. The physical interaction involves NH(2)-terminal cytoplasmic residues 37-54 of γ-ENaC, containing a critical gating domain immediately before the first transmembrane domain, and the cytoplasmic COOH-terminal tail of meprin β (residues 679-704). This potential association was confirmed by co-expression and co-immunoprecipitation studies. Functional assays revealed that meprins stimulate ENaC expressed exogenously in Xenopus oocytes and endogenously in epithelial cells. Co-expression of ENaC subunits and meprin β or α/β in Xenopus oocytes increased amiloride-sensitive Na(+) currents approximately two-fold. This increase was blocked by preincubation with an inhibitor of meprin activity, actinonin. The meprin-mediated increase in ENaC currents in oocytes and epithelial cell monolayers required meprin β, but not the α subunit. Meprin β promoted cleavage of α and γ-ENaC subunits at sites close to the second transmembrane domain in the extracellular domain of each channel subunit. Thus, meprin β regulates the activity of ENaC in a metalloprotease-dependent fashion.  相似文献   

3.
Epithelial sodium channels (ENaC) are expressed in the apical membrane of high resistance Na(+) transporting epithelia and have a key role in regulating extracellular fluid volume and the volume of airway surface liquids. Maturation and activation of ENaC subunits involves furin-dependent cleavage of the ectodomain at two sites in the alpha subunit and at a single site within the gamma subunit. We now report that the serine protease prostasin further activates ENaC by inducing cleavage of the gamma subunit at a site distal to the furin cleavage site. Dual cleavage of the gamma subunit is predicted to release a 43-amino acid peptide. Channels with a gamma subunit lacking this 43-residue tract have increased activity due to a high open probability. A synthetic peptide corresponding to the fragment cleaved from the gamma subunit is a reversible inhibitor of endogenous ENaCs in mouse cortical-collecting duct cells and in primary cultures of human airway epithelial cells. Our results suggest that multiple proteases cleave ENaC gamma subunits to fully activate the channel.  相似文献   

4.
Regulation of epithelial Na(+) channel (ENaC) subunit levels by protein kinase C (PKC) was investigated in A6 cells. PKC activation altered ENaC subunit levels, differentially decreasing the levels of both beta and gamma, but not alphaENaC. Temporal regulation of beta and gammaENaC by PKC differed; gammaENaC decreased with a time constant of 3.7 +/- 1.0 h, whereas betaENaC decreased in 13.9 +/- 3. 0 h. Activation of PKC also resulted in a decrease in trans-epithelial Na(+) reabsorption for up to 48 h. PMA activation of PKC resulted in negative feedback inhibition of PKC protein levels beginning within 4 h. Both beta and gammaENaC levels, as well as transport tended toward pretreatment values after 48 h of PMA treatment. PKC inhibitors attenuated the effects of PMA on ENaC subunit levels and Na(+) transport. These results directly show for the first time that PKC differentially regulates ENaC subunit levels by decreasing the levels of beta and gamma but not alphaENaC protein. These results imply a PKC-dependent, long term decrease in Na(+) reabsorption.  相似文献   

5.
Antidiuretic hormone and/or cAMP increase Na(+) transport in the rat renal collecting duct and similar epithelia, including Madin-Darby canine kidney (MDCK) cell monolayers grown in culture. This study was undertaken to determine if that increment in Na(+) transport could be explained quantitatively by an increased density of ENaC Na(+) channels in the apical membrane. MDCK cells with no endogenous ENaC expression were retrovirally transfected with rat alpha-, beta-, and gammaENaC subunits, each of which were labeled with the FLAG epitope in their extracellular loop as described previously (Firsov, D., L. Schild, I. Gautschi, A.-M. Mérillat, E. Schneeberger, and B.C. Rossier. 1996. PROC: Natl. Acad. Sci. USA. 93:15370-15375). The density of ENaC subunits was quantified by specific binding of (125)I-labeled anti-FLAG antibody (M2) to the apical membrane, which was found to be a saturable function of M2 concentration with half-maximal binding at 4-8 nM. Transepithelial Na(+) transport was measured as the amiloride-sensitive short-circuit current (AS-I(sc)) across MDCK cells grown on permeable supports. Specific M2 binding was positively correlated with AS-I(sc) measured in the same experiments. Stimulation with cAMP (20 microM 8-p-chlorothio-cAMP plus 200 microM IBMX) significantly increased AS-I(sc) from 11.2 +/- 1.3 to 18.1 +/- 1.3 microA/cm(2). M2 binding (at 1.7 nM M2) increased in direct proportion to AS-I(sc) from 0.62 +/- 0.13 to 1.16 +/- 0.18 fmol/cm(2). Based on the concentration dependence of M2 binding, the quantity of Na(+) channels per unit of AS-I(sc) was calculated to be the same in the presence and absence of cAMP, 0.23 +/- 0.04 and 0.21 +/-0.05 fmol/microA, respectively. These values would be consistent with a single channel conductance of approximately 5 pS (typically reported for ENaC channels) only if the open probability is <0.02, i.e., less than one-tenth of the typical value. We interpret the proportional increases in binding and AS-I(sc) to indicate that the increased density of ENaC subunits in the apical membrane can account completely for the I(sc) increase produced by cAMP.  相似文献   

6.
The epithelial Na(+) channel (ENaC) is modulated by membrane lipid composition. However, the effect of an in vivo change of membrane composition is unknown. We examined the effect of a 70-day enhanced cholesterol diet (ECD) on ENaC and renal Na(+) handling. Rats were fed a standard chow or one supplemented with 1% cholesterol and 0.5% cholic acid (ECD). ECD animals exhibited marked anti-diuresis and anti-natriuresis (40 and 47%), which peaked at 1-3 weeks. Secondary compensation returned urine output and urinary Na(+) excretion to control levels by week 10. During these initial changes, there were no accompanying effects on systolic blood pressure, serum creatinine, or urinary creatinine excretion, indicating that the these effects of ECD preceded those which modify renal filtration and blood pressure. The effects of ECD on ENaC were evaluated by measuring the relative protein content of α, β, and γ subunits. α and γ blots were further examined for subunit cleavage (a process that activates ENaC). No significant changes were observed in α and β levels throughout the study. However, levels of cleaved γ were elevated, suggesting that ENaC was activated. The changes of γ persisted at week 10 and were accompanied by additional subunit fragments, indicating potential changes of γ-cleaving proteases. Enhanced protease activity, and specifically that which could act on the second identified cleavage site in γ, was verified in a newly developed urinary protease assay. These results predict enhanced ENaC activity, an effect that was confirmed in patch clamp experiments of principal cells of split open collecting ducts, where ENaC open probability was increased by 40% in the ECD group. These data demonstrate a complex series of events and a new regulatory paradigm that is initiated by ECD prior to the onset of elevated blood pressure. These events lead to changes of renal Na(+) handling, which occur in part by effects on extracellular γ-ENaC cleavage.  相似文献   

7.
The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophysiology of essential hypertension and cystic fibrosis (CF). The function of ENaC is tightly regulated by signals elicited by aldosterone, vasopressin, agents that increase intracellular cAMP levels, ions, ion channels, G-protein-coupled mechanisms, and cytoskeletal proteins. In this paper, the effects of Ca(2+) on the expression of the human ENaC subunits expressed in human embryonic kidney cells (HEK-293 cells) were examined. Incubation of cells with increased extracellular Ca(2+) and treatment of cells with A23187 and thapsigargin stimulated the expression of the monomeric ENaC subunits. Treatment of cells with Ca(2+)-chelating agents, EGTA and BAPTA-AM, reduced the levels of ENaC subunit expression. The pulse-chase experiments suggested that a rise in the intracellular Ca(2+) increases the ENaC subunit expression. Immunoblot analysis using the anti-ubiquitin antibody indicated that ENaC undergoes ubiquitination. A correlation between the processes that regulate ENaC function with the intracellular Ca(2+) was discussed.  相似文献   

8.
We used a yeast one-hybrid complementation screen to identify regions within the cytosolic tails of the mouse alpha, beta, and gamma epithelial Na+ channel (ENaC) important to protein-protein and/or protein-lipid interactions at the plasma membrane. The cytosolic COOH terminus of alphaENaC contained a strongly interactive domain just distal to the second transmembrane region (TM2) between Met610 and Val632. Likewise, gammaENaC contained such a domain just distal to TM2 spanning Gln573-Pro600. Interactive domains were also localized within Met1-Gln54 and the last 17 residues of alpha- and betaENaC, respectively. Confocal images of Chinese hamster ovary cells transfected with enhanced green fluorescent fusion proteins of the cytosolic tails of mENaC subunits were consistent with results in yeast. Fusion proteins of the NH2 terminus of alphaENaC and the COOH termini of all three subunits co-localized with a plasma membrane marker. The functional importance of the membrane interactive domain in the COOH terminus of gammaENaC was established with whole-cell patch clamp experiments of wild type (alpha, beta, and gamma) and mutant (alpha, beta, and gammadeltaQ573-P600) mENaC reconstituted in Chinese hamster ovary cells. Mutant channels had about 13% of the activity of wild type channels with 0.33 +/- 0.14 versus 2.5 +/- 0.80 nA of amiloridesensitive inward current at -80 mV. Single channel analysis of recombinant channels demonstrated that mutant channels had a decrease in Po with 0.16 +/- 0.03 versus 0.67 +/- 0.07 for wild type. Mutant gammaENaC associated normally with the other two subunits in co-immunoprecipitation studies and localized to the plasma membrane in membrane labeling experiments and when visualized with evanescent-field fluorescence microscopy. Similar to deletion of Gln573-Pro600, deletion of Gln573-Arg583 but not Thr584-Pro600 decreased ENaC activity. The current results demonstrate that residues within Gln573-Arg583 of gammaENaC are necessary for normal channel gating.  相似文献   

9.
The epithelial Na channel (ENaC) forms a pathway for Na+ reabsorption in the distal nephron, and regulation of these channels is essential for salt homeostasis. In the rat kidney, ENaC subunits reached the plasma membrane in both immature and fully processed forms, the latter defined by either endoglycosidase H–insensitive glycosylation or proteolytic cleavage. Animals adapted to a low-salt diet have increased ENaC surface expression that is specific for the mature forms of the subunit proteins and is similar (three- to fourfold) for α, β, and γENaC. Kidney membranes were fractionated using differential centrifugation, sucrose-gradient separation, and immunoabsorption. Endoplasmic reticulum membranes, isolated using an antibody against calnexin, expressed immature γENaC, and the content decreased with Na depletion. Golgi membranes, isolated with an antibody against the cis-Golgi protein GM130, expressed both immature and processed γENaC; Na depletion increased the content of processed γENaC in this fraction by 3.8-fold. An endosomal compartment isolated using an antibody against Rab11 contained both immature and processed γENaC; the content of processed subunit increased 2.4-fold with Na depletion. Finally, we assessed the content of γENaC in the late endocytic compartments indirectly using urinary exosomes. All of the γENaC in these exosomes was in the fully cleaved form, and its content increased by 4.5-fold with Na depletion. These results imply that stimulation of ENaC surface expression results at least in part from increased rates of formation of fully processed subunits in the Golgi and subsequent trafficking to the apical membrane.  相似文献   

10.
The epithelial Na(+) channel (ENaC) has three subunits; the expression of each can be regulated. Liddle's syndrome is caused by an activating mutation in the C terminus of either the beta or gamma subunit. We used a doxycycline-regulated adenovirus system to express varying levels of human gammaENaC in renal collecting duct (M1 cell) monolayers. Increasing levels of wild type human gamma ENaC (gammahENaC) produced a 2.5-fold enhancement of Na(+) transport. Expression of a truncated C terminus produced less protein than wild type or a gammaY627A missense mutation. However, either of these mutations produced a approximately 4-fold increase in Na(+) transport despite the different levels of protein expression. Unexpectedly, overexpression of a marginally detectable amount of gammahENaC was sufficient to produce a full increase in Na(+) transport; a further increase in protein expression produced no further increase in Na(+) transport. Steroid treatment increased Na(+) transport to a similar absolute magnitude in control monolayers and in monolayers expressing all types of gammahENaC. Withdrawal of steroids after 24 h produced a decline in Na(+) transport over 8 h in monolayers expressing wild type but not the Liddle's mutation. Using treatment with brefeldin A to estimate the disappearance rate constants, we found progressively slower disappearance rates in monolayers overexpressing gammahENaC and the Liddle's mutant. Calculated insertion rates were slower for the Liddle's mutant than for wild type despite increasing rates of Na(+) transport. These results raise questions regarding previously held assumptions about the behavior of ENaC.  相似文献   

11.
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.  相似文献   

12.
Ion channels, including the epithelial Na(+) channel (ENaC), are intrinsic membrane proteins comprised of component subunits. Proper subunit assembly and stoichiometry are essential for normal physiological function of the channel protein. ENaC comprises three subunits, alpha, beta, and gamma, that have common tertiary structures and much amino acid sequence identity. For maximal ENaC activity, each subunit is required. The subunit stoichiometry of functional ENaC within the membrane remains uncertain. We combined a biophysical approach, fluorescence intensity ratio analysis, used to assess relative subunit stoichiometry with total internal reflection fluorescence microscopy, which enables isolation of plasma membrane fluorescence signals, to determine the limiting subunit stoichiometry of ENaC within the plasma membrane. Our results demonstrate that membrane ENaC contains equal numbers of each type of subunit and that at steady state, subunit stoichiometry is fixed. Moreover, we find that when all three ENaC subunits are coexpressed, heteromeric channel formation is favored over homomeric channels. Electrophysiological results testing effects of ENaC subunit dose on channel activity were consistent with total internal reflection fluorescence/fluorescence intensity ratio findings and confirmed preferential formation of heteromeric channels containing equal numbers of each subunit.  相似文献   

13.
Cl- interference with the epithelial Na+ channel ENaC   总被引:2,自引:0,他引:2  
The cystic fibrosis transmembrane conductance regulator (CFTR) is a protein kinase A and ATP-regulated Cl- channel that also controls the activity of other membrane transport proteins, such as the epithelial Na+ channel ENaC. Previous studies demonstrated that cytosolic domains of ENaC are critical for down-regulation of ENaC by CFTR, whereas others suggested a role of cytosolic Cl- ions. We therefore examined in detail the anion dependence of ENaC and the role of its cytosolic domains for the inhibition by CFTR and the Cl- channel CLC-0. Coexpression of rat ENaC with human CFTR or the human Cl- channel CLC-0 caused inhibition of amiloride-sensitive Na+ currents after cAMP-dependent stimulation and in the presence of a 100 mM bath Cl- concentration. After activation of CFTR by 3-isobutyl-1-methylxanthine and forskolin or expression of CLC-0, the intracellular Cl- concentration was increased in Xenopus oocytes in the presence of a high bath Cl- concentration, which inhibited ENaC without changing surface expression of alpha beta gammaENaC. In contrast, a 5 mM bath Cl- concentration reduced the cytosolic Cl- concentration and enhanced ENaC activity. ENaC was also inhibited by injection of Cl- into oocytes and in inside/out macropatches by exposure to high cytosolic Cl- concentrations. The effect of Cl- was mimicked by Br-, Br-, NO3(-), and I-. Inhibition by Cl- was reduced in trimeric channels with a truncated COOH terminus of betaENaC and gammaENaC, and it was no longer detected in dimeric alpha deltaCbeta ENaC channels. Deletion of the NH2 terminus of alpha-, beta-, or gammaENaC, mutations in the NH2-terminal phosphatidylinositol bisphosphate-binding domain of betaENaC and gammaEnaC, and activation of phospholipase C, all reduced ENaC activity but allowed for Cl(-)-dependent inhibition of the remaining ENaC current. The results confirm a role of the carboxyl terminus of betaENaC for Cl(-)-dependent inhibition of the Na+ channel, which, however, may only be part of a complex regulation of ENaC by CFTR.  相似文献   

14.
An epithelial Na(+) channel (ENaC) is expressed in taste cells and may be involved in the salt taste transduction. ENaC activity is blocked by amiloride, which in several mammalian species also inhibits taste responses to NaCl. In mice, lingual application of amiloride inhibits NaCl responses in the chorda tympani (CT) gustatory nerve much stronger in the C57BL/6 (B6) strain than in the 129P3/J (129) strain. We examined whether this strain difference is related to gene sequence variation or mRNA expression of three ENaC subunits (alpha, beta, gamma). Real-time RT-PCR and in situ hybridization detected no significant strain differences in expression of all three ENaC subunits in fungiform papillae. Sequences of the beta- and gammaENaC subunit genes were also similar in the B6 and 129 strains, but alphaENaC gene had three single nucleotide polymorphisms (SNPs). One of these SNPs resulted in a substitution of arginine in the B6 strain to tryptophan in the 129 strain (R616W) in the alphaENaC protein. To examine association of this SNP with amiloride sensitivity of CT responses to NaCl, we produced F(2) hybrids between B6 and 129 strains. Amiloride inhibited CT responses to NaCl in F(2) hybrids with B6/129 and B6/B6 alphaENaC R616W genotypes stronger than in F(2) hybrids with 129/129 genotype. This suggests that the R616W variation in the alphaENaC subunit affects amiloride sensitivity of the ENaC channel and provides evidence that ENaC is involved in amiloride-sensitive salt taste responses in mice.  相似文献   

15.
Nedd4-2 catalyzes ubiquitination and degradation of cell surface ENaC   总被引:1,自引:0,他引:1  
Epithelial Na(+) absorption is regulated by Nedd4-2, an E3 ubiquitin-protein ligase that reduces expression of the epithelial Na(+) channel ENaC at the cell surface. Defects in this regulation cause Liddle syndrome, an inherited form of hypertension. Previous work found that Nedd4-2 binds to ENaC via PY motifs located in the C termini of alpha-, beta-, and gammaENaC. However, little is known about the mechanism by which Nedd4-2 regulates ENaC surface expression. Here we found that Nedd4-2 catalyzes ubiquitination of alpha-, beta-, and gammaENaC; Nedd4-2 overexpression increased ubiquitination, whereas Nedd4-2 silencing decreased ubiquitination. Although Nedd4-2 increased both mono/oligoubiquitinated and multiubiquitinated forms of ENaC, monoubiquitination was sufficient for Nedd4-2 to reduce ENaC surface expression and reduce ENaC current. Ubiquitination was disrupted by Liddle syndrome-associated mutations in ENaC or mutation of the catalytic HECT domain in Nedd4-2. Several findings suggest that the interaction between Nedd4-2 and ENaC is localized to the cell surface. First, Nedd4-2 bound to a population of ENaC at the cell surface. Second, Nedd4-2 catalyzed ubiquitination of cell surface ENaC. Third, Nedd4-2 selectively reduced ENaC expression at the cell surface but did not alter the quantity of immature ENaC in the biosynthetic pathway. Finally, Nedd4-2 induced degradation of the cell surface pool of ENaC. Together, the data suggest a model in which Nedd4-2 binds to and ubiquitinates ENaC at the cell surface, which targets surface ENaC for degradation, and thus, reduces epithelial Na(+) transport.  相似文献   

16.
Epithelial sodium channel (ENaC) is a heteromultimeric Na+ channel at the apical membrane in the kidney, colon, and lung. Because ENaC plays a crucial role in regulating Na+ absorption and extracellular fluid volume, its dysregulation causes severe phenotypes including hypertension, hypokalemia, and airway obstruction. Despite the importance of ENaC, its protein quality control mechanism remains less established. Here we firstly show the role of calreticulin (CRT), a lectin-like molecular chaperone in the endoplasmic reticulum (ER), on the regulation of ENaC. Overexpression and knockdown analyses clearly indicated that CRT positively affects the expression of each ENaC subunit (α, β and γ). CRT overexpression also up-regulated the cell surface expression of α-, β- and γ-ENaC. Moreover, we found that CRT directly interacts with each ENaC subunit. Although CRT knockdown did not affect the de novo synthesis of ENaC subunits, CRT overexpression decreased α-, β- and γ-ENaC expression in the detergent (RIPA)-insoluble fraction, suggesting that CRT enhanced the solubility of ENaC subunits. Consistent with the increased intracellular and cell surface expression of ENaC subunits, increased channel activity of ENaC was also observed upon overexpression of CRT. Our study thus identifies CRT as an ER chaperone that regulates ENaC expression and function.  相似文献   

17.
As a pathway for Na(+) reabsorption, the epithelial Na(+) channel ENaC is critical for Na(+) homeostasis and blood pressure control. Na(+) transport is regulated by Nedd4-2, an E3 ubiquitin ligase that decreases ENaC expression at the cell surface. To investigate the underlying mechanisms, we proteolytically cleaved/activated ENaC at the cell surface and then quantitated the rate of disappearance of cleaved channels using electrophysiological and biochemical assays. We found that cleaved ENaC channels were rapidly removed from the cell surface. Deletion or mutation of the Nedd4-2 binding motifs in alpha, beta, and gammaENaC dramatically reduced endocytosis, whereas a mutation that disrupts a YXX? endocytosis motif had no effect. ENaC endocytosis was also decreased by silencing of Nedd4-2 and by expression of a dominant negative Nedd4-2 construct. Conversely, Nedd4-2 overexpression increased ENaC endocytosis in human embryonic kidney 293 cells but had no effect in Fischer rat thyroid epithelia. In addition to its effect on endocytosis, Nedd4-2 also increased the rate of degradation of the cell surface pool of cleaved alphaENaC. Together the data indicate that Nedd4-2 reduces ENaC surface expression by altering its trafficking at two distinct sites in the endocytic pathway, inducing endocytosis of cleaved channels and targeting them for degradation.  相似文献   

18.
Cell surface expression of the epithelial Na(+) channel ENaC is regulated by the ubiquitin ligase Nedd4. Binding of the WW domains of Nedd4 to the PY region in the carboxy tails of beta and gammaENaC, results in channel ubiquitination and degradation. Kinetic analysis of these interactions has been done using surface plasmon resonance. Synthetic peptides corresponding to the PY regions of beta and gammaENaC were immobilized on a sensor chip and "real-time" kinetics of their binding to recombinant WW proteins was determined. Specificity of the interactions was established by competition experiment, as well as by monitoring effects of a point mutation known to impair Nedd4/ENaC binding. These data provides the first determination of association, dissociation and equilibrium constants for the interactions between WW2 and beta or gammaENaC.  相似文献   

19.
The epithelial sodium channel (ENaC) is a heterotrimeric protein responsible for Na(+) absorption across the apical membranes of several absorptive epithelia. The rate of Na(+) absorption is governed in part by regulated membrane trafficking mechanisms that control the apical membrane ENaC density. Previous reports have implicated a role for the t-SNARE protein, syntaxin 1A (S1A), in the regulation of ENaC current (I(Na)). In the present study, we examine the structure-function relations influencing S1A-ENaC interactions. In vitro pull-down assays demonstrated that S1A directly interacts with the C termini of the alpha-, beta-, and gamma-ENaC subunits but not with the N terminus of any ENaC subunit. The H3 domain of S1A is the critical motif mediating S1A-ENaC binding. Functional studies in ENaC expressing Xenopus oocytes revealed that deletion of the H3 domain of co-expressed S1A eliminated its inhibition of I(Na), and acute injection of a GST-H3 fusion protein into ENaC expressing oocytes inhibited I(Na) to the same extent as S1A co-expression. In cell surface ENaC labeling experiments, reductions in plasma membrane ENaC accounted for the H3 domain inhibition of I(Na). Individually substituting C terminus-truncated alpha-, beta-, or gamma-ENaC subunits for their wild-type counterparts reversed the S1A-induced inhibition of I(Na), and oocytes expressing ENaC comprised of three C terminus-truncated subunits showed no S1A inhibition of I(Na). C terminus truncation or disruption of the C terminus beta-subunit PY motif increases I(Na) by interfering with ENaC endocytosis. In contrast to subunit truncation, a beta-ENaC PY mutation did not relieve S1A inhibition of I(Na), suggesting that S1A does not perturb Nedd4 interactions that lead to ENaC endocytosis/degradation. This study provides support for the concept that S1A inhibits ENaC-mediated Na(+) transport by decreasing cell surface channel number via direct protein-protein interactions at the ENaC C termini.  相似文献   

20.
The epithelial Na(+) channel, ENaC, is exposed to a wide range of proton concentrations in the kidney, lung, and sweat duct. We, therefore, tested whether pH alters ENaC activity. In Xenopus oocytes expressing human alpha-, beta-, and gammaENaC, amiloride-sensitive current was altered by protons in the physiologically relevant range (pH 8.5-6.0). Compared with pH 7.4, acidic pH increased ENaC current, whereas alkaline pH decreased current (pH(50) = 7.2). Acidic pH also increased ENaC current in H441 epithelia and in human primary airway epithelia. In contrast to human ENaC, pH did not alter rat ENaC current, indicating that there are species differences in ENaC regulation by protons. This resulted predominantly from species differences in gammaENaC. Maneuvers that lock ENaC in a high open-probability state ("DEG" mutation, proteolytic cleavage) abolished the effect of pH on human ENaC, indicating that protons alter ENaC current by modulating channel gating. Previous work showed that ENaC gating is regulated in part by extracellular Na(+) ("Na(+) self-inhibition"). Based on several observations, we conclude that protons regulate ENaC by altering Na(+) self-inhibition. First, protons reduced Na(+) self-inhibition in a dose-dependent manner. Second, ENaC regulation by pH was abolished by removing Na(+) from the extracellular bathing solution. Third, mutations that alter Na(+) self-inhibition produced corresponding changes in ENaC regulation by pH. Together, the data support a model in which protons modulate ENaC gating by relieving Na(+) self-inhibition. We speculate that this may be an important mechanism to facilitate epithelial Na(+) transport under conditions of acidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号