首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resting tension and short-range elastic properties of isolated twitch muscle fibers of the frog have been studied while bathed by solutions of different tonicities. Resting tension in isotonic solution at 2.3-µm sarcomere spacing averaged 0.46 mN·mm-2 and was proportional to the fiber cross-section area. Hypertonic solutions, containing 0.1–0.5 mM tetracaine to block contracture tension, caused a small sustained tension increase, which was proportional to the fiber cross-section area and which reached 0.9 mN·mm-2 at two times normal tonicity (2T). Further increases in tonicity caused little increase in tension. Hypotonic solutions decreased tension. Thus, tension at 2.3 µm is a continuous, direct function of tonicity. The dependence of tension on tonicity lessened at greater sarcomere lengths. At 3.2 µm either a very small rise or, in some fibers, a fall in tension resulted from an increase in tonicity. Hypertonic solutions also decreased the tension of extended sarcolemma preparations. In constant-speed stretch experiments the elastic modulus, calculated from the initial part of the stretch response, rose steeply with tonicity over the whole range investigated (1–2.5T). The results show that tension and stiffness of the short-range elastic component do not increase in parallel in hypertonic solutions.  相似文献   

2.
This study describes the effect of hypertonic solutions on isolated muscle fibers of Callinectes danae. Solutions of twice normal tonicity (2.0 T) inhibit both the normal graded membrane responses and the spikes induced by procaine, tetraethylammonium, or barium. The inhibition is maintained throughout exposure to hypertonic solutions prepared by addition of impermeant solutes such as NaCl, sucrose, or Tris-propionate, but is reversible on their withdrawal. In the presence of permeant solutes such as glycerol or acetamide, the inhibition is transient. In both cases the onset of inhibition of the depolarizing Ca electrogenesis is correlated with shrinkage of the fiber. In the case of permeant solutes, the time course of recovery of the graded responses or the spikes follows the recovery of the fiber volume. Changes in the passive electrical characteristics of the fibers due to hypertonic solutions were unrelated to the blockade of membrane Ca activation. The current-voltage relationship in hypertonic sollution revealed no increase in depolarizing K activation. Inhibition of the graded membrane responses and spikes appears to be associated with depression of Ca conductance. Hypertonic solutions might affect the activation of Ca conductance through reduction of the electric field generated by fixed negative surface charges and/or morphological changes in the T tubules. Membrane depolarization elicited little or no tension in 2.0 T solutions while caffeine contracture (10 mM) with an ampliture of 76% of the maximal contractile ability could still be elicited. This indicates that direct effects of hypertonic solutions on the contractile apparatus were not responsible for loss of tension. The latter is attributed to the inhibition of the transmembrane Ca currents.  相似文献   

3.
Efflux of Red Cell Water into Buffered Hypertonic Solutions   总被引:3,自引:2,他引:1       下载免费PDF全文
Buffered NaCl solutions hypertonic to rabbit serum were prepared and freezing point depressions of each determined after dilution with measured amounts of water. Freezing point depression of these dilutions was a linear function of the amount of water added. One ml. of rabbit red cells was added to each 4 ml. of the hypertonic solutions and after incubation at 38°C. for 30 minutes the mixture was centrifuged and a freezing point depression determined on the supernatant fluid. The amount of water added to the hypertonic solutions by the red cells was calcuated from this freezing point depression. For each decrease in the freezing point of -0.093°C. of the surrounding solution red cells gave up approximately 5 ml. of water per 100 ml. of red cells in the range of -0.560 to -0.930°C. Beyond -0.930°C. the amount of water given up by 100 ml. of red cells fits best a parabolic equation. The maximum of this equation occurred at a freezing point of the hypertonic solution of -2.001°C. at which time the maximum amount of water leaving the red cells would be 39.9 ml. per 100 ml. of red cells. The data suggest that only about 43 per cent of the red cell water is available for exchange into solutions of increasing tonicity.  相似文献   

4.
Effects of External Calcium Deprivation on Single Muscle Fibers   总被引:6,自引:2,他引:4  
Deprivation of external calcium causes sudden potentiation of the twitch response of single muscle fibers. The potentiation was 64 ± 8%. Potentiation is simultaneous with membrane depolarization occurring after Ca++ removal. This depolarization amounted to 9 ± 2 mv. Ca++ removal also alters the action potential. 3 min after calcium withdrawal, action potential amplitude fell by 36 ± 3 mv; maximum rates of rise and fall of the spike decreased by 55 ± 5 and 63 ± 5% respectively. Changes in shape of the A. P. differ from those seen with other potentiators of the twitch response, such as Zn++. After short exposure to calcium-free media, potassium-induced contractures show potentiation of peak tension. The S-shaped curve relating potassium contracture tension to log [K]o shifts to the left after such treatment. Calcium deprivation also increased the rate of relaxation of the contractures. This effect depends on the duration of calcium deprivation, and is probably related to the effect of calcium lack on the membrane. The change in relaxation occurred immediately after calcium deprivation, and was reversed by sudden readmission of calcium. Relaxation of twitch and tetanus responses also were affected by Ca lack, but not as rapidly as potassium contractures. The results suggest that external calcium is not directly involved in the process responsible for tension development, supporting the view that this process is mediated by translocation of intracellular calcium. The relaxation process, however, appears to be rapidly affected by deprivation of external calcium.  相似文献   

5.
The mechanical properties, as revealed by minute length changes, of isolated twitch fibers of the frog have been studied at rest and during low-level activation. Resting tension is 77 ± 23 mN/cm2 (mean ± SD) at 2.2 µm sarcomere length.1 The slope of the tension curve (ΔPL) recorded during a constant-speed length change of a resting fiber is initially large. At length changes exceeding about 0.18 % of the initial length of the fiber ΔPL falls abruptly and remains close to zero during the rest of the length change. The amplitude of the tension response is reduced after a length change and returns to normal in about 3 min. Hypertonic sucrose-Ringer solutions cause a small, maintained rise in tension up to 1.4–1.6 times normal osmotic strength. Higher sucrose concentrations cause relatively large, transient tension responses. The initial ΔPL is increased in moderately hypertonic solutions; it may be reduced in more strongly hypertonic solutions. Elevated [K]o (range 10–17.5 mM) causes a marked reduction in ΔPL. In this range of [K]o the reduction is not accompanied by changes in resting tension. Addition of 1–1.5 mM caffeine to the Ringer solution affects the resting tension very little but also reduces ΔPL. The results suggest that stiffness and tension development are not related in a simple way.  相似文献   

6.
Efflux and Influx of Erythrocyte Water   总被引:1,自引:1,他引:0       下载免费PDF全文
Rabbit erythrocytes were washed in buffered NaCl solutions isotonic with rabbit serum (Δt -0.558°C.) and suspended in buffered NaCl solutions of tonicity equidistant from intracellular tonicity (Δt = -0.558°C. ± 0.112°C.) of varying pH and incubated at varying temperatures. After incubation, the freezing point depression (Δt) was measured on the supernatant. Change in the Δt measured change in the water content of the extracellular solutions—water being withdrawn by erythrocytes (WI) from the hypotonic solutions and added (WE) to the hypertonic solutions. WE was always less than WI and was inversely proportional to the pH in the range 6.5–8.0. WE was significantly increased by lowering the temperature of the cell suspension to 4°C. WI was increased by raising or lowering the pH or raising the temperature of the cell suspension. WE x WIk. WE and WI were affected differently by changes in pH and temperature. It was concluded that WE and WE were probably under different physicochemical control.  相似文献   

7.
The effect of hypertonic solutions on the caffeine- and KCl-induced contractures of isolated fibers of frog skeletal muscle was tested. Hypertonic solutions, twice the normal osmotic strength, prepared by adding NaCl or sucrose, potentiate the caffeine-induced contractures. The fibers may develop tensions of 3.6 kg/cm2 of fiber transverse section. The same hypertonic medium reduced the peak tension of KCl-induced contractures. Thus the hypertonic condition does not affect the contractile mechanism itself. These findings give further support to the view that the differential effect of hypertonic solution is on the excitation-contraction coupling mechanism. Extracellular calcium is not essentially required for the first few of a series of caffeine-induced contractures either in hypertonic or in isotonic solutions.  相似文献   

8.
The effect of external calcium and of temperature on the contractile responses has been studied in voltage clamped snake twitch muscle fibers. Increasing [Ca++]o from 0.2 to 7.0 mM raised contractile threshold by 15–20 mV, the latter coinciding with the appearance of delayed rectification. The duration of contracture, the rates of rise and decay of tension depended on the level of depolarization and [Ca++]o. The minimum duration of repolarization necessary to restore the contractile response was much shorter in high [Ca++]o. When the bathing solution was cooled to 10 from 20°C the time-course of contracture was markedly prolonged and the outward current was reduced without significant change in maximum tension. The threshold for contraction tended to be somewhat lower at the lower temperature. The contractile repriming was much slower at low temperature. However, reduction in temperature slowed the rate of recovery much less at low [Ca++]o than at normal [Ca++]o.  相似文献   

9.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

10.
Single muscle fibers were exposed to solutions made hypertonic (approximately 460 milliosmols/kg water) by addition of either NaCl, glycerol, urea, acetamide, ethylene glycol, or propylene glycol. The changes in either the fiber twitch tension or the volume were measured. In the case of NaCl both fiber volume and twitch tension fall rapidly to 64 and 27% of the respective initial value. These two values were maintained for the duration of the exposure. In the case of the other substances, the fiber volume and twitch tension also decreased but in these cases the effect was transient and the fibers recovered their initial volume and twitch tension. The rate of recovery in the different hypertonic media increased in the order: glycerol < urea < ethylene glycol < propylene glycol < acetamide. In the cases of the last three substances, the initial twitch value was recovered in less than 5 min and even surpassed. However, on returning to normal Ringer the fibers' ability to twitch or to develop potassium contractures was lost. The return of the fibers to normal Ringer after exposure to these hypertonic solutions causes a transient swelling of the fibers. However, when fibers were swelled by exposure to hypotonic media, they did not lose their ability to twitch on return to the normal Ringer.  相似文献   

11.
Micro-osmotic manipulation was used to determine the influence of osmotic contraction on the expansion potential of individual protoplasts isolated from rye (Secale cereale L. cv Puma) leaves. For protoplasts isolated from leaves of nonacclimated plants (NA protoplasts), osmotic contraction in sufficiently hypertonic solutions (>1.53 osmolal) predisposed the protoplasts to lysis during osmotic expansion when they were returned to isotonic conditions (0.53 osmolal). In contrast, for protoplasts isolated from leaves of cold acclimated plants (ACC protoplasts), osmotic contraction in either 2.6 or 4.0 osmolal solutions was readily reversible. Following osmotic contraction, the resting tension (γr) of NA protoplasts was similar to that determined for protoplasts in isotonic solutions (i.e. 110 ± 22 micronewtons per meter). In contrast, γr of ACC protoplasts decreased from 164 ± 27 micronewtons per meter in isotonic solutions to values close to zero in hypertonic solutions. Following expansion in hypotonic solutions, γr's of both NA and ACC protoplasts were similar for area expansions over the range of 1.3 to 1.6. Following osmotic contraction and reexpansion of NA protoplasts, hysteresis was observed in the relationship between γr and surface area—with higher values of γr at a given surface area. In contrast, no hysteresis was observed in this relationship for ACC protoplasts. Direct measurements of plasma membrane tension (γ) during osmotic expansion of NA protoplasts from hypertonic solutions (1.53 osmolal) revealed that γ increased rapidly after small increments in surface area, and lysis occurred over a range of 1.2 to 8 millinewtons per meter. During osmotic expansion of ACC protoplasts from hypertonic solutions (2.6 osmolal), there was little increase in γ until after the isotonic surface area was exceeded. These results are discussed in relation to the differences in the behavior of the plasma membrane of NA and ACC protoplasts during osmotic contraction (i.e. endocytotic vesiculation versus exocytotic extrusion) and provide a mechanistic interpretation to account for the differential sensitivity of NA and ACC protoplasts to osmotic expansion from hypertonic solutions.  相似文献   

12.
Relations between the membrane potential and the tension associated with changes in membrane potential were analyzed in barnacle giant muscle fibers by using voltage clamp techniques. With a step change in membrane potential the tension reaches its final level with a time course which is expressed by the difference of two exponential functions. The time constants τ1 (0.2–0.4 sec at 23°C) and τ2 (0.07–0.12 sec at 23°C) are independent of the new membrane potential at least for a relatively small membrane potential change while the final level of tension is a function of the potential. Decreasing the temperature increases both τ1 and τ2 (Q10 = -2 to -3) and the increase of the tonicity of the external medium increases τ1 but not τ2. The final level of tension is related by an S-shaped curve to the membrane potential. The slope of the final tension-membrane potential curve increases with increasing external Ca concentration and is reduced when a small amount of transition metal ions is added to the medium. This suggests that the influx of Ca ions through the membrane is an important factor in the development of tension.  相似文献   

13.
Frog skeletal muscle fibers, mechanically skinned under water-saturated silicone oil, swell upon transfer to aqueous relaxing medium (60 mM KCl; 3 mM MgCl2; 3 mM ATP; 4 mM EGTA; 20 mM Tris maleate; pH = 7.0; ionic strength 0.15 M). Their cross-sectional areas, estimated with an elliptical approximation, increase 2.32-fold (±0.54 SD). Sarcomere spacing is unaffected by this swelling. Addition of 200 mM sucrose to relaxing medium had no effect on fiber dimensions, whereas decreasing pH to 5.0 caused fibers to shrink nearly to their original (oil) size. Decreasing MgCl2 to 0.3 mM caused fibers to swell 10%, and increasing MgCl2 to 9 mM led to an 8% shrinkage. Increasing ionic strength to 0.29 M with KCl caused a 26% increase in cross-sectional area; decreasing ionic strength to 0.09 M had no effect. Swelling pressure was estimated with long-chain polymers, which are probably excluded from the myofilament lattice. Shrinkage in dextran T10 (number average mol wt 6,200) was transient, indicating that this polymer may penetrate into the fibers. Shrinkage in dextran T40 (number average mol wt 28,000), polyvinylpyrrolidone (PVP) K30 (number average mol wt 40,000) and dextran T70 (number average mol wt 40,300) was not transient, indicating exclusion. Maximal calcium-activated tension is decreased by 21% in PVP solutions and by 31% in dextran T40 solutions. Fibers were shrunk to their original size with 8 × 10-2 g/cm3 PVP K30, a concentration which, from osmometric data, corresponds to an osmotic pressure (II/RT) of 10.5 mM. As discussed in the text, we consider this our best estimate of the swelling pressure. We find that increasing ionic strength to 0.39 M with KCl decreases swelling pressure slightly, whereas decreasing ionic strength to 0.09 M has no effect. We feel these data are consistent with the idea that swelling arises from the negatively charged nature of the myofilaments, from either mutual filamentary repulsion or a Donnan-osmotic mechanism.  相似文献   

14.
Raising the tonicity of the fluid bathing frog atrial trabeculae has three effects: an initial sustained relaxation, which depends on muscle length and probably originates from structures other than the contractile apparatus; an increase in contractility, which takes the form of a transient contracture if the muscle has previously undergone a high-potassium or a low-sodium contracture, and a further rise in contractility on return to isotonic fluid (off response). The hypertonic contractures, in high-potassium or sodium-free fluids, are antagonized by local anaesthetics and in Na-free media they are unaffected by removal of extracellular coat, whereas the 'off responses' are insensitive to both experimental manoeuvres. Hypotonic fluids applied in Na-free solutions evoke a phasic and a tonic contracture, neither of which are sensitive to local anaesthetics. The tonic response is reduced by lowering the [Ca]o, and occurs at tonicities where the permeability of the cell membrane is likely to have increased. The phasic part of the hypotonic contracture resembles the 'off response' which follows exposure to hypertonic solution. The effects of hypertonic fluids and of caffeine on frog heart are alike, and are also similar to the responses induced by the same experimental manoeuvres in skeletal muscle. The results can be interpreted by assuming that the intracellular relaxing system in frog heart is sensitive to changes in tonicity, and could be functionally divided.  相似文献   

15.
The role of swelling-activated currents in cell volume regulation is unclear. Currents elicited by swelling rabbit ventricular myocytes in solutions with 0.6–0.9× normal osmolarity were studied using amphotericin perforated patch clamp techniques, and cell volume was examined concurrently by digital video microscopy. Graded swelling caused graded activation of an inwardly rectifying, time-independent cation current (ICir,swell) that was reversibly blocked by Gd3+, but ICir,swell was not detected in isotonic or hypertonic media. This current was not related to IK1 because it was insensitive to Ba2+. The PK/PNa ratio for ICir,swell was 5.9 ± 0.3, implying that inward current is largely Na+ under physiological conditions. Increasing bath K+ increased gCir,swell but decreased rectification. Gd3+ block was fitted with a K 0.5 of 1.7 ± 0.3 μM and Hill coefficient, n, of 1.7 ± 0.4. Exposure to Gd3+ also reduced hypotonic swelling by up to ∼30%, and block of current preceded the volume change by ∼1 min. Gd3+-induced cell shrinkage was proportional to ICir,swell when ICir,swell was varied by graded swelling or Gd3+ concentration and was voltage dependent, reflecting the voltage dependence of ICir,swell. Integrating the blocked ion flux and calculating the resulting change in osmolarity suggested that ICir,swell was sufficient to explain the majority of the volume change at –80 mV. In addition, swelling activated an outwardly rectifying Cl current, ICl,swell. This current was absent after Cl replacement, reversed at ECl, and was blocked by 1 mM 9-anthracene carboxylic acid. Block of ICl,swell provoked a 28% increase in swelling in hypotonic media. Thus, both cation and anion swelling-activated currents modulated the volume of ventricular myocytes. Besides its effects on cell volume, ICir,swell is expected to cause diastolic depolarization. Activation of ICir,swell also is likely to affect contraction and other physiological processes in myocytes.  相似文献   

16.
Autoradiographic Studies of Intracellular Calcium in Frog Skeletal Muscle   总被引:15,自引:6,他引:9  
Autoradiographs consisting of a 1000 A thick tissue section and a 1400 A thick emulsion film have been prepared from frog toe muscles labeled with Ca45. The muscles had been fixed with an oxalate-containing osmium solution at rest at room temperature, at rest at 4°C, during relaxation following K+ depolarization or after prolonged depolarization. From 6 to 39 per cent of K+ contracture tension was produced during fixation. The grains in the autoradiographs were always concentrated in the center 0.2 to 0.3 µ of the I band and the region of the overlapping of the thick and thin filaments. The greater the tension produced during fixation, the greater was the concentration in the A band and the smaller the concentration in the I band. Autoradiographs of two muscles fixed by freeze-substitution resembled those of muscles which produced little tension during osmium fixation. Muscles which shortened during fixation produced fewer grains. In the narrow (<2.0 µ) sarcomeres of the shortened muscles, grain density decreased with decreasing sarcomere width. A theoretical analysis of the significance of these grain distributions is proposed and discussed.  相似文献   

17.
Potassium (K+) contracture tension, measured in small bundles of rat soleus muscle fibers during maintained depolarization, increases to a peak value and then decays either to the baseline or to a pedestal level. We have tested the hypothesis that the rise and fall of tension are determined by independent activation and inactivation processes. If the “Independence” hypothesis is correct, tension during the decay of K+ contractures should equal tension predicted from the product of the activation and inactivation parameters determined from the same K+ contractures. Both the measured and predicted tensions decayed to a pedestal level that was increased in amplitude in the presence of perchlorate ions. However, the measured tensions in normal solutions and in the presence of perchlorate were three to five times smaller than the predicted tensions. This result indicates that the activation and inactivation of processes controlling the rise and decay of K+ contracture tension are not independent.  相似文献   

18.
The myosin lattice spacing of single intact muscle fibers of the frog, Rana temporaria, was studied in Ringer's solution (standard osmolarity 230 mOsm) and hyper- and hypotonic salines (1.4 and 0.8 times standard osmolarity respectively) in the relaxed state, during "fixed end" tetani, and during shortening, using synchrotron radiation. At standard tonicity, a tetanus was associated with an initial brief lattice expansion (and a small amount of sarcomere shortening), followed by a slow compression (unaccompanied by sarcomere length changes). In hypertonic saline (myosin lattice compressed by 8.1%), these spacing changes were suppressed, in hypotonic saline (lattice spacing increased by 7.5%), they were enhanced. During unloaded shortening of activated fibers, a rapid lattice expansion occurred at all tonicities, but became larger as tonicity was reduced. This expansion was caused in part by the change in length of the preparation, but also by a recoil of a stressed radial compliance associated with axial force. The lattice spacing during unloaded shortening was equal to or occasionally greater than predicted for a relaxed fiber at that sarcomere length, indicating that the lattice compression associated with activation is rapidly reversed upon loss of axial force. Lattice recompression occurred upon termination of shortening under standard and hypotonic conditions, but was almost absent under hypertonic conditions. These observations indicate that axial cross-bridge tension is associated with a compressive radial force in intact muscle fibers at full overlap; however, this radial force exhibits a much greater sensitivity to lattice spacing than does the axial force.  相似文献   

19.
The electrical responses of the smooth muscle cells of the rabbit common carotid artery to extracellular stimulation were studied in isotonic and hypertonic solution (1.7 times normal tonicity) with microelectrodes. No spontaneous electrical or mechanical activity was recorded when the tissue was in either isotonic or hypertonic solution. The voltage-current relation of smooth muscle cells in the common carotid artery showed marked rectification in both isotonic and hypertonic solutions. In isotonic and hypertonic solutions mean values for membrane potentials were -44.5 and -51.5 mv, for space constants 1.13 and 1.21 mm, and for time constants 212.2 and 238.2 msec, respectively. Addition of 34.3 mM TEA to the solutions caused spontaneous action potentials in the common carotid artery. The action potentials recorded simultaneously from two microelectrodes showed good synchronization. It was concluded that there is electrical transmission between cells of this artery.  相似文献   

20.
W Lin  E E Bittar 《Life sciences》1974,15(9):1611-1619
Isometric tension measurements carried out on uncannulated, intact barnacle muscle fibers show that the minimal concentration of caffeine which produces contracture is 2mM and that which produces maximal tension is 30mM. Pretreatment of barnacle fibers with 3mM-caffeine renders these fibers less sensitive to a second challege e.g. with 30mM-caffeine, the amplitude of the contractile response being time-dependent. Caffeine-treated fibers fail to relax completely. Isotonic tension measurements indicate that the residual tension caused by caffeine is dose-dependent. Significantly, the tension caused by caffeine is independent of the external Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号