首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Amaranthus includes several important monoecious and dioecious weed species, and several populations of these species have developed resistance to herbicides. These species are closely related and two or more species often coexist in agricultural settings. Collectively, these attributes raise the concern that herbicide resistance might transfer from one weedy Amaranthus species to another. We performed research to determine if a dominant allele encoding a herbicide-insensitive form of acetolactate synthase (ALS) could be transferred from a monoecious species, A. hybridus, to a dioecious species, A. rudis. Numerous F1 hybrids were obtained from controlled crosses in a greenhouse between A. rudis and herbicide-resistant A. hybridus, and most (85%) of these hybrids were herbicide-resistant. Molecular analysis of the ALS gene was used to verify that herbicide-resistant hybrids contained both an A. rudis and an A. hybridus ALS allele. Although hybrids had greatly reduced fertility, 42 BC1 plants were obtained by backcrossing 33 hybrids with male A. rudis. Fertility was greatly restored in BC1 progeny, and numerous BC2 progeny were obtained from a second backcross to A. rudis. The herbicide-resistance allele from A. hybridus was transmitted to 50% of the BC1 progeny. The resistance allele was subsequently transmitted to and conferred herbicide resistance in 39 of 110 plants analyzed from four BC2 families. Parental species, hybrids, and BC2 progeny were compared for 2C nuclear DNA contents. The mean hybrid 2C nuclear DNA content, 1.27 pg, was equal to the average between A. rudis and A. hybridus, which had 2C DNA contents of 1.42 and 1.12 pg, respectively. The mean 2C DNA content of BC2 plants, 1.40 pg, was significantly (! < 0.01) less than that of the recurring A. rudis parent and indicated that BC2 plants were not polyploid. This report demonstrates that herbicide resistance can be acquired by A. rudis through a hybridization event with A. hybridus.  相似文献   

2.
In this study, the removal of nitrate (NO3m) ions from aqueous streams with liquid membrane technique has been investigated. Among the other parameters (temperature, pH, acceptor phase type and medium concentration), the stirring speed was chosen as process parameter. From the experimental results, it has been determined that the reaction was diffusion controlled. The transport efficiency of nitrate ions increased with increasing stirring speed. The membrane entrance and exit rate constants (k1d, k2m and k2a respectively) were linearly dependent on the stirring speed ratios of 100 to 250 rpm. Coupled transport of nitrate ions through a liquid membrane in 85% n-hexane-15% tricloromethane as diluent, containing tetraoctyl ammonium chloride (TOACl) as a carrier was examined at various stirring speeds. Membrane entrance (k1d) and exit rates (k2m and k2a) increase with increasing the stirring speeds. The diffusion of the nitrate ion-carrier complex through the narrow stagnant layers was found to be rate determining step. The membrane was stable during the transport experiments. There is no leakage of carrier or nitrate ion-carrier complex to both aqueous phases and also, no supplementary water penetration into the membrane. This favours interfacial reaction of nitrate ion and carrier.  相似文献   

3.
P. Singh 《Plant cell reports》2002,20(12):1188-1190
In order to investigate the possible role of Rht genes in the regulation of the redox condition of cytochrome a3 (cytochrome c oxidase) during steady-state respiration, wheat cultivars belonging to one of two groups - NP 710, NP 846 and NP 875 belonging to the tall group and Olesons dwarf, HD 1982 and HD 2122 of the dwarf group - and the reciprocal crosses between the varieties of these two groups were examined for carbon monoxide (CO) sensitivity in terms of the inhibition of mitochondrial electron transport. Leaves of young wheat seedlings were used. Differences in the redox state of cytochrome a3 were monitored using the in vivo aerobic assay of nitrate reduction after a 1-min exposure to CO. Dwarf cultivars possessing Rht genes responded marginally (᜖%) to CO inhibition, whereas the response of tall cultivars to CO was higher (51-70%). Since CO forms a complex only with reduced cytochrome a3, the results indicate differences in the redox state of cytochrome a3 during in situ respiration of leaves from tall and dwarf plants that are likely to be controlled by cytoplasmic factors.  相似文献   

4.
We hypothesized that changes in plant growth resulting from atmospheric CO2 and O3 enrichment would alter the flow of C through soil food webs and that this effect would vary with tree species. To test this idea, we traced the course of C through the soil microbial community using soils from the free-air CO2 and O3 enrichment site in Rhinelander, Wisconsin. We added either 13C-labeled cellobiose or 13C-labeled N-acetylglucosamine to soils collected beneath ecologically distinct temperate trees exposed for 3 years to factorial CO2 (ambient and 200 µl l-1 above ambient) and O3 (ambient and 20 µl l-1 above ambient) treatments. For both labeled substrates, recovery of 13C in microbial respiration increased beneath plants grown under elevated CO2 by 29% compared to ambient; elevated O3 eliminated this effect. Production of 13C-CO2 from soils beneath aspen (Populus tremuloides Michx.) and aspen-birch (Betula papyrifera Marsh.) was greater than that beneath aspen-maple (Acer saccharum Marsh.). Phospholipid fatty acid analyses (13C-PLFAs) indicated that the microbial community beneath plants exposed to elevated CO2 metabolized more 13C-cellobiose, compared to the microbial community beneath plants exposed to the ambient condition. Recovery of 13C in PLFAs was an order of magnitude greater for N-acetylglucosamine-amended soil compared to cellobiose-amended soil, indicating that substrate type influenced microbial metabolism and soil C cycling. We found that elevated CO2 increased fungal activity and microbial metabolism of cellobiose, and that microbial processes under early-successional aspen and birch species were more strongly affected by CO2 and O3 enrichment than those under late-successional maple.  相似文献   

5.
The use of a thermosensitive genic male sterility (TGMS) system in two-line hybrid rice breeding is affected greatly by the sterility instability of TGMS lines caused by temperature fluctuation beyond their critical temperatures for fertility reversion. To prevent seed production from self contamination, we have developed a system to secure seed purity using a herbicide-sensitive TGMS mutant, M8077S, obtained by radiation. Genetic analysis, using the F1, F2 and F3 populations derived from this mutant and other normal varieties, revealed that bentazon lethality/sensitivity was controlled by a single recessive gene, which was named bel. The mutant can be killed at the seedling stage by bentazon at 300 mg/l or higher, a dosage that is safe for its F1 hybrids and all other normal varieties. This mutant is also sensitive to all the tested sulfonylurea herbicides. Response of segregating plants to these two types of herbicide indicated that sulfonylurea sensitivity was also controlled by bel. By crossing this mutant with Pei-Ai 64S, an F2 population was developed for genetic mapping. Surveying the two DNA pools from sensitive and non-sensitive F2 plants identified four markers that were polymorphic between the pools. The putative linked markers were then confirmed with the F2 population. The bel locus was located on chromosome 3, 7.1 cM from the closest microsatellite marker RM168. Phenotypic analysis indicated that the bel gene had no negative effect on agronomic traits in either a homozygous or heterozygous status. The mutant M8077S is valuable in the development of a TGMS breeding system for preventing impurity resulting from temperature fluctuation of the TGMS. Several two-line hybrid rice crosses using this system are under development.  相似文献   

6.
Carbon dioxide flux from coarse woody debris (CWD) is an important source of CO2 in forests with moderate to large amounts of CWD. A process-based understanding of environmental controls on CWD CO2 flux (RCWD) is needed to accurately model carbon exchange between forests and the atmosphere. The objectives of this study were to: (1) use a laboratory incubation factorial experiment to quantify the effect of temperature (TCWD), water content (WC), decay status, and their interactions on RCWD for black spruce [Picea mariana (Mill.) BSP] CWD; (2) measure and model spatial and temporal dynamics in TCWD for a boreal black spruce fire chronosequence; and (3) validate the RCWD model with field measurements, and quantify potential errors in estimating annual RCWD from this model on various time steps. The RCWD was positively correlated to TCWD (R2=0.37, P<0.001) and WC (R2=0.18, P<0.001), and an empirical RCWD polynomial model that included TCWD and WC interactions explained 74% of the observed variation of RCWD. The RCWD estimates from the RCWD model excellently matched the field measurements. Decay status of CWD significantly (P<0.001) affected RCWD. The temperature coefficient (Q10) averaged 2.5, but varied by 141% across the 5-42°C temperature range, illustrating the potential shortcomings of using a constant Q10. The CWD temperature was positively correlated to air temperature (R2=0.79, P<0.001), with a hysteresis effect that was correlated to CWD decay status and stand leaf area index . Ignoring this temperature hysteresis introduced errors of -1% to +32% in annual RCWD estimates. Increasing TCWD modeling time step from hourly to daily or monthly introduced a 5-11% underestimate in annual RCWD. The annual RCWD values in this study were more than two-fold greater than those in a previous study, illustrating the need to incorporate spatial and temporal responses of RCWD to temperature and water content into models for long-term RCWD estimation in boreal forest ecosystems.  相似文献   

7.
A highly efficient and reproducible transformation system for orchardgrass (Dactylis glomerata L. cv. Rapido, 2n=42=28) was established using microprojectile bombardment of highly regenerative, green tissues derived from mature seeds. These tissues, induced from embryogenic callus, were bombarded with a mixture of three plasmids containing the hygromycin phosphotransferase (hpt), phosphinothricin acetyltransferase (bar) and #-glucuronidase (uidA; gus) genes. From 147 individual explants bombarded, 11 independent hygromycin-resistant lines (7.5%) were obtained after an 8- to 16-week selection period using 30-50 mg/l hygromycin B. Of the 11 independent lines, ten (91%) were regenerable. The presence and integration of the transgene(s) were assessed using PCR and DNA blot hybridization. Coexpression frequency of the three transgenes (hpt/bar/uidA) in T0 plants was 20%, and of two transgenes, either hpt/bar or hpt/uidA, 45-60%. Due to greenhouse conditions optimized for the growth of other species, T1 seed has not been obtained from these plants. While the inability to analyze progeny plants precludes the conclusive demonstration of stable transformation, the results of all molecular and biochemical analyses of T0 plants are consistent with the production of stably transformed plants. Frequent change in ploidy level was observed in transformed T0 orchardgrass plants. Plants from only three of the ten independent lines analyzed had the normal tetraploid number of chromosomes (2n=42=28), while plants from seven lines (70%) were octaploid (2n=82=56). The octaploid plants had abnormal morphological features, such as narrower, thicker and more upright leaves.  相似文献   

8.
The DO-controlled glucose limited fed-batch technique was investigated in an E. coli process for production of a recombinant protein. The kLac* value (oxygen transfer rate at zero oxygen concentration) was calculated from on-line gas analysis data during the process. In the investigated processes with induced production of recombinant protein, the kLac* value decreased drastically several hours after induction. The reason for the decrease was found in increasing concentrations of DNA in the medium and increased viscosity due to cell lysis. The consequences of such a dramatic decrease in the volumetric oxygen transfer coefficient on the glucose feed and specific rates are described in computer simulations and experimental data.  相似文献   

9.
Three impeller-sparger configurations were used to evaluate the effect of different hydrodynamic conditions over fungal growth in rheologically complex cultures of Trichoderma harzianum using castor oil as sole carbon source. Three spargers (ring, sintered and 5-orifice) in combination with a turbine impeller system "TIS" (two Rushton turbines) or a hybrid impeller system "HIS" (Rushton turbine and a marine propeller as lower and upper impellers) were used. Their performance was assessed in terms of the response towards disturbance (PID oxygen control settings) and oxygen mass transfer (kLa). To avoid oxygen limitations, all cultures were controlled at 10% DOT by gas blending. Top to bottom mixing, and hence bulk blending, was improved when the - axial flow - HIS was used, ensuring phase interaction and substrate (oil) circulation. The 5-orifice sparger in combination with the TIS configuration yielded the longest lag phase and lowest kLa due to poor bulk blending and to the low gas-liquid interfacial area developed. The highest kLa was achieved with the sintered sparger-HIS probably due to considerable interfacial bubble area enhancement. However, growth limitation occurred as consequence of poor substrate availability as a stable air-oil emulsion was formed at the top of the tank. The best compromise between bulk blending (phase interaction), oxygen transfer (kLa) and fungal growth (growth rate) was achieved with the ring sparger-HIS configuration.  相似文献   

10.
The mixing behaviour of the liquid phase in concentric-tube airlift bioreactors of different scale (RIMP: VL=0.070 m3; RIS-1: VL=2.50 m3; RIS-2: VL=5.20 m3) in terms of mixing time was investigated. This mixing parameter was determined from the output curves to an initial Dirac pulse, using the classical tracer response technique, and analyzed in relation to process and geometrical parameters, such as: gas superficial velocity, xSGR; top clearance, hS; bottom clearance, hB, and ratio of the resistances at downcomer entrance, Ad/AR. A correlation between the mixing time and the specified operating and geometrical parameters was developed, which was particularized for two flow regimes: bubbly and transition (xSGRА.08 m/s) and churn turbulent flow (xSGR> 0.08 m/s) respectively. The correlation was applied in bioreactors of different scale with a maximum error of ᆲ%.  相似文献   

11.
The responses of Quercus robur (oak) and Fagus sylvatica (beech) seedlings to four different light environments (full, 50%, 40% and 15% sunlight) and to a rapid increase in irradiance were explored during the summer, after 2 years of growth in a forest nursery at Nancy (France). Significant differences between the two species were found for most variables. Phenotypic plasticity for morphological variables (root-shoot ratio, leaf size, leaf weight ratio) was higher in beech than in oak, while the reverse was true for anatomical (stomatal density, epidermis thickness, exchange surface area of the palisade parenchyma) and physiological (maximum photosynthetic rate, stomatal conductance, Rubisco activity) variables. Predawn photochemical efficiency (Fv/Fm) was higher in oak than in beech in all light environments except in 15% sunlight. Fv/Fm was significantly lower in 100% sunlight than in the other light environments in beech but not in oak. Maximum photosynthetic rates (Amax) increased with increasing light availability in the two species but they were always higher in oak than in beech. Oak exhibited higher Rubisco activity than beech in full sunlight. The transfer of shade-adapted seedlings to the open caused a decrease of Fv/Fm, which was larger for beech than for oak. Transferred oak but not beech plants recovered gradually to the control Fv/Fm values. The decreased chlorophyll content and the increased non-photochemical quenching observed in high-light beech seedlings were not enough to avoid photoinhibition. The results suggest that a greater tolerance of strong irradiance is linked to an enhanced physiological plasticity (variables related to photosynthesis), while shade tolerance relies on an enhanced plasticity in light-harvesting variables (crown morphology and chlorophyll content).  相似文献   

12.
Conifers decrease the amount of biomass apportioned to leaves relative to sapwood in response to increasing atmospheric evaporative demand. We determined how these climate-driven shifts in allocation affect the aboveground water relations of ponderosa pine growing in contrasting arid (desert) and humid (montane) climates. To support higher transpiration rates, a low leaf:sapwood area ratio (AL/AS) in desert versus montane trees could increase leaf-specific hydraulic conductance (KL). Alternatively, a high sapwood volume:leaf area ratio in the desert environment may increase the contribution of stored water to transpiration. Transpiration and hydraulic conductance were determined by measuring sap flow (JS) and shoot water potential during the summer (June-July) and fall (August-September). The daily contribution of stored water to transpiration was determined using the lag between the beginning of transpiration from the crown at sunrise and JS. In the summer, mean maximum JS was 31.80LJ.74 and 24.34Dž.05 g m-2 s-1 for desert and montane trees (a 30.6% difference), respectively. In the fall, JS was 25.33NJ.52 and 16.36dž.64 g m-2 s-1 in desert and montane trees (a 54.8% difference), respectively. JS was significantly higher in desert relative to montane trees during summer and fall (P<0.05). Predawn and midday shoot water potential and sapwood relative water content did not differ between environments. Desert trees had a 129% higher KL than montane trees in the summer (2.41᎒-5 versus 1.05᎒-5 kg m-2 s-1 MPa-1, P<0.001) and a 162% higher KL in the fall (1.97᎒-5 versus 0.75᎒-5 kg m-2 s-1 MPa-1, P<0.001). Canopy conductance decreased with D in all trees at all measurement periods (P<0.05). Maximum gC was 3.91 times higher in desert relative to montane trees averaged over the summer and fall. Water storage capacity accounted for 11 kg (11%) and 10.6 kg (17%) of daily transpiration in the summer and fall, respectively, and did not differ between desert and montane trees. By preventing xylem tensions from reaching levels that cause xylem cavitation, high KL in desert ponderosa pine may facilitate its avoidance. Thus, the primary benefit of low leaf:sapwood allocation in progressively arid environments is to increase KL and not to increase the contribution of stored water to transpiration.  相似文献   

13.
To investigate the effect of both initially present soluble inert COD (SI) and soluble inert COD formed by microbial activities (SPM) on the effluent soluble residual COD (SR) and to determine biokinetic constants, the pure-oxygen was employed for the batch assays of biological leachate treatment. The results of this work showed that the effluent residual soluble COD was entirely composed of SI and SPM, therefore, could not be reduced below 7-10% of total influent soluble COD (ST0.inf), corresponding to the organics removal efficiency of 93-90%. The value of SI of leachate, which is associated with the types of wastewaters, was determined as approximately 7.84% of ST0.inf, and the soluble inert COD by microbial activities was assessed by means of the coefficient fPM of 0.0474. These results mean that significant amount of feed leachate COD may pass the biological system without any change. On the basis of the concept that microorganisms must satisfy their maintenance energy requirements prior to synthesizing new biomass, a set of batch assays with various ratios of ST0.inf /X0 were carried out to evaluate their effects on the excess biomass production. Decreasing the supply of substrate per unit biomass resulted in gradual decrease in the biomass yields, but, at the same time, it resulted in gradual increase in the bacteria mediated inert COD as a side effect. The optimum ratios of ST0.inf /X0 were concluded as 0.2-0.6 according to the careful consideration of both aspects on the reduction of net sludge yields and inert COD from microbial activities.  相似文献   

14.
We tested the hypothesis that hydraulic conductance per unit leaf surface area of plant shoots (KSL) determines the maximum diurnal stomatal conductance (gL) that can be reached by plants growing in the field. A second hypothesis was tested that some xylem cavitation cannot be avoided by transpiring plants and might act as a signal for regulating gL. Eleven woody species were studied, differing from each other with respect to taxonomy, wood anatomy and leaf habit. Maximum diurnal gL, transpiration rate (EL), pre-dawn and minimum diurnal leaf water potential (Opd and Omin, respectively) were measured in the field. The critical O level at which stem cavitation was triggered (Ocav) was measured on detached branches, using the acoustic method. A high-pressure flow meter was used to measure maximum KSL of 1-year-old shoots. Both gL and EL were positively related to KSL. The whole-plant hydraulic conductance per unit leaf area (KWL) of all the species studied, calculated as the ratio of EL to (O (=Opd-Omin) was closely related to KSL. In every case, Omin (ranging between -0.85 and -1.35 MPa in the different species) dropped to the Ocav range or was <Ocav (ranging between -0.71 and -1.23 MPa), thus suggesting that some cavitation-induced embolism could not be avoided. The possibility is discussed that some cavitation-induced reduction in KSL is the signal for stomatal closure preventing runaway embolism. The lack of correlation of gL to Ocav is discussed in terms of the inconsistency of Ocav as an indicator of the vulnerability of plants to cavitation. No differences in hydraulic traits were observed between evergreen and deciduous species.  相似文献   

15.
Ram Oren  Diane E. Pataki 《Oecologia》2001,127(4):549-559
Responses of forests to changes in environmental conditions reflect the integrated behavior of their constituent species. We investigated sap flux-scaled transpiration responses of two species prevalent in upland eastern hardwood forests, Quercus alba in the upper canopy and Acer rubrum in the low to mid canopy, to changes in photosynthetically active radiation above the canopy (Qo), vapor pressure deficit within the canopy (D), and soil moisture depletion during an entire growing season. Water loss before bud break (presumably through the bark) increased linearly with D, reaching 8% of daily stand transpiration (EC) as measured when leaf area index was at maximum, and accounting for 5% of annual water loss. After leaves were completely expanded and when soil moisture was high, sap flux-scaled daily EC increased linearly with the daily sum of Qo. Species differences in this response were observed. Q. alba reached a maximum transpiration at low Qo, while A. rubrum showed increasing transpiration with Qo at all light levels. Daily EC increased in response to daily average D, with an asymptotic response due to the behavior of Q. alba. Transpiration of A. rubrum showed a greater response to soil moisture depletion than did that of Q. alba. When evaluated at a half-hourly scale under high Qo, mean canopy stomatal conductance (GS) of individuals decreased with D. The sensitivity of GS to D was greater in species with higher intrinsic GS. Regardless of position in the canopy, diffuse-porous species in this and an additional, more mesic stand showed higher GS and greater stomatal sensitivity to environmental variation than do ring-porous species.  相似文献   

16.
The uniform stress hypothesis of stem formation was evaluated by comparing stem taper of Abies balsamea, Abies lasiocarpa, Picea rubens, Pinus contorta, Pinus elliottii, Pinus palustris, Pinus ponderosa, Pinus taeda, and Pseudotsuga menziesii to the taper expected if stems develop to uniformly distribute bending stress. The comparison was conducted by regressing stem diameter at height h (Dh) against bending moment at h (Mh) using the model Dh=J (Mh)' where J and ' are fitted coefficients, and testing for '=0.333, the hypothesized value. Twelve curves were fitted with the model. Seven of the fitted values of ' were significantly different from 0.333, but eight of the values were within ᆞ% of 0.333 and eleven values were within ᆣ% of 0.333. Where the fitted value of ' was >15% of 0.333, residuals were biased with height. Fit by relative height, values of ' were within ᆞ% of 0.333 for large portions of these stems. While most of the fitted values of ' support the uniform-stress hypothesis, the values of ' for Pseudotsuga menziesii trees clearly did not. Many of the fitted values of J were inversely related to the modulus of elasticity (E) of green wood reported for these species. With the exception of Pseudotsuga menziesii, growing conditions appeared to account for extraordinary values of J. Increases in J with stem height corresponded with reported decreases in E with height. The covariance between J and E suggests some regulation of bending curvature by adjustments in cross-sectional area. These results suggest that stems taper to maintain a uniform bending curvature and that when E is relatively constant within and among stems, diameter along the stem or across stems can be predicted from bending moment using a simple power function.  相似文献   

17.
In-situ estimates of fast-ice algal productivity at Cape Evans, McMurdo Sound, in 1999 were lower than at the same site in previous years. Under-ice irradiance was between 0 and 8 µmol photons m-2 s-1; the ice was between 1.9 and 2.0 m thick and the algal biomass averaged 150 mg chl a m-2, although values as high as 378 mg chl a m-2 were recorded. Production on 11 and 12 November was between 0.053 and 1.474 mg C m-2 h-1. When the data from 11 November were fitted to a hyperbolic tangent function, a multilinear regression gave estimates for Pmax of 0.571 nmol O2 cm-2 s-1, an ! of 0.167 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1 and an Ek of 3.419 µmol photons m-2 s-1. A Pmax of 2.674 nmol O2 cm-2 s-1, an ! of 0.275 nmol O2 cm-2 s-1 µmol-1 photons m-2 s-1, r of 0.305 nmol O2 cm-2 s-1 and an Ek of 9.724 µmol-1 photons m-2 s-1 were estimated from the 12 November data. The sea-ice algal community was principally comprised of Nitzschia stellata, Entomoneis kjellmanii and Berkeleya adeliensis. Other taxa present included N. lecointei, Fragilariopsis spp., Navicula glaciei, Pleurosigma spp. and Amphora spp. Variations in the method for estimating the thickness of the diffusive boundary layer were not found to significantly affect the measurements of oxygen flux. However, the inability to accurately measure fine-scale variations in biomass is thought to contribute to the scatter of the P versus E data.  相似文献   

18.
19.
Lipases are widely used catalysts for highly enantioselective resolution of chiral secondary alcohols. While stereopreference is determined predominantly by the substrate structure, stereoselectivity (enantioselectivity and diastereoselectivity) depends on the atomic details of interactions between substrate and lipase. Experimentally obtained stereoselectivity and activity in the hydrolysis of butanoic acid esters of two secondary alcohols with two neighboring stereocenters by Candida rugosa lipase have been investigated by computer-aided molecular modeling of tetrahedral substrate intermediates in complex with the lipase. Breakdown of these intermediates is considered to be the rate-limiting step. Steric interactions of stereoisomers with the side chain of catalytic histidine led to different orientations of the imidazole. The distance d(HN)-Oalc) between HN) of the imidazole side chain of catalytic histidine and the alcohol oxygen of the substrate was identified to correlate with the experimentally determined reactivity order of the four stereoisomers. Modeled distances d(HN)-Oalc) were short (=1.8 Å) for RR stereoisomers, which were also found to be hydrolyzed most rapidly experimentally; distances d(HN)-Oalc) were about 2 Å for SS and SR stereoisomers, which were converted at similar rates but at a lower rate than RR stereoisomers; finally, distances d(HN)-Oalc) for SR stereoisomers were greater than 4 Å, in accordance with very slow conversion of SR stereoisomers.  相似文献   

20.
The correlation between 99 clone female and male fertilities in a first generation seed orchard of Pinus densiflora was studied over 6 years. The effective number of the parent (Np) and the variance effective population number [Ne(v)] were used to assess the impact of total (OT), female (Nf) and male (Nm) fertility variation. A theoretical framework was developed to account for female and male fertility correlations as well as the impact of possible pollen contamination. Total fertility variation was described by the sibling coefficient (OT: the probability that two genes randomly chosen from the gamete gene pool originate from the same parent), which was further subdivided into Nf and Nm. These parameters were compared under various conditions including the total seed harvest, imposing on equal seed harvest among the orchard's clones and two contamination scenarios (M = 0 and 20%). Fertility variations among females, males and clones were observed within and among years. Sibling coefficients (OT) were lower, but the effective number of parent (Np) and variance effective population number (Ne(v)) were higher in years with moderate female and good male strobilus production. Np for female and male reproductive outputs varied from 49 to 82 and from 57 to 93, respectively. Np was higher for males than females. When the crop of the 6 years was pooled, Np for female, male and the clone were 73, 87 and 85, respectively. The impact of female-male fertility correlation for conditions with no-, positive- and negative-correlations were assessed and their impact on OT, Np and Ne(v) was also evaluated. It was demonstrated that the practice of equal seed harvesting from every clone, or the mixing of seeds from several years, would substantially improve the genetic diversity and the genetic representation of the seed orchard population when a positive correlation between gender fertilities was observed. The relevance of these results to supplemental-mass-pollination was discussed under two cases where equal- and un-equal amounts of pollen from clones were included in the pollen mixes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号