首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Schimke immuno-osseous dysplasia (SIOD) is a pleiotropic disorder caused by mutations in the SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like-1 (SMARCAL1) gene, with multiple clinical features, notably end-stage renal disease. Here we characterize the renal pathology in SIOD patients. Our analysis of SIOD patient renal biopsies demonstrates the tip and collapsing variants of focal segmental glomerulosclerosis (FSGS). Additionally, electron microscopy revealed numerous glomerular abnormalities most notably in the podocyte and Bowman’s capsule. To better understand the role of SMARCAL1 in the pathogenesis of FSGS, we defined SMARCAL1 expression in the developing and mature kidney. In the developing fetal kidney, SMARCAL1 is expressed in the ureteric epithelium, stroma, metanephric mesenchyme, and in all stages of the developing nephron, including the maturing glomerulus. In postnatal kidneys, SMARCAL1 expression is localized to epithelial tubules of the nephron, collecting ducts, and glomerulus (podocytes and endothelial cells). Interestingly, not all cells within the same lineage expressed SMARCAL1. In renal biopsies from SIOD patients, TUNEL analysis detected marked increases in DNA fragmentation. Our results highlight the cells that may contribute to the renal pathogenesis in SIOD. Further, we suggest that disruptions in genomic integrity during fetal kidney development contribute to the pathogenesis of FSGS in SIOD patients.  相似文献   

3.
Focal segmental glomerulosclerosis (FSGS), a type of primary glomerular disease, is the leading cause of end-stage renal disease (ESRD). Several studies have revealed that certain single-gene mutations are involved in the pathogenesis of FSGS; however, the main cause of FSGS has not been fully elucidated. Homozygous mutations in the glomerular basement membrane gene can lead to early renal failure, while heterozygous carriers develop renal failure symptoms late. Here, molecular genetic analysis of clinical information collected from clinical reports and medical records was performed. Results revealed that nephrosis 2 (NPHS2) gene polymorphism aggravated renal damage in three FSGS families with heterozygous COL4A3 mutation, leading to early renal failure in index patients. Our findings suggest that COL4A3 and NPHS2 may have a synergistic effect on renal injury caused by FSGS. Further analysis of the glomerular filtration barrier could help assess the cause of kidney damage. Moreover, a detailed analysis of the glomerular basement membrane-related genes and podocyte structural proteins may help us better understand FSGS pathogenesis and provide insights into the prognosis and treatment of hereditary glomerulonephropathy.  相似文献   

4.

Background

Primary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated.

Methods

NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25), membranous nephropathy (MN, n = 24), minimal change disease (MCD, n = 14) and IgA nephropathy (IgAN, n = 26), and healthy controls (CON, n = 35). The acquired data were analyzed using principal component analysis (PCA) followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation tests.

Results

FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and β-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies.

Conclusions

NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS.  相似文献   

5.
Mutations in the gene encoding canonical transient receptor potential-6 (TRPC6) channels result in severe nephrotic syndromes that typically lead to end-stage renal disease. Many but not all of these mutations result in a gain in the function of the resulting channel protein. Since those observations were first made, substantial work has supported the hypothesis that TRPC6 channels can also contribute to progression of acquired (non-genetic) glomerular diseases, including primary and secondary FSGS, glomerulosclerosis during autoimmune glomerulonephritis, and possibly in type-1 diabetes. Their regulation has been extensively studied, especially in podocytes, but also in mesangial cells and other cell types present in the kidney. More recent evidence has implicated TRPC6 in renal fibrosis and tubulointerstitial disease caused by urinary obstruction. Consequently TRPC6 is being extensively investigated as a target for drug discovery. Other TRPC family members are present in kidney. TRPC6 can form a functional heteromultimer with TRPC3, and it has been suggested that TRPC5 may also play a role in glomerular disease progression, although the evidence on this is contradictory. Here we review literature on the expression and regulation of TRPC6, TRPC3 and TRPC5 in various cell types of the vertebrate kidney, the evidence that these channels are dysregulated in disease models, and research showing that knock-out or pharmacological inhibition of these channels can reduce the severity of kidney disease. We also summarize several areas that remain controversial, and some of the large gaps of knowledge concerning the fundamental role of these proteins in regulation of renal function.  相似文献   

6.
Focal and segmental glomerulosclerosis (FSGS) is one of the most important renal diseases related to end-stage renal failure. Bradykinin has been implicated in the pathogenesis of renal inflammation, whereas the role of its receptor 2 (B2RBK; also known as BDKRB2) in FSGS has not been studied. FSGS was induced in wild-type and B2RBK-knockout mice by a single intravenous injection of Adriamycin (ADM). In order to further modulate the kinin receptors, the animals were also treated with the B2RBK antagonist HOE-140 and the B1RBK antagonist DALBK. Here, we show that the blockage of B2RBK with HOE-140 protects mice from the development of FSGS, including podocyte foot process effacement and the re-establishment of slit-diaphragm-related proteins. However, B2RBK-knockout mice were not protected from FSGS. These opposite results were due to B1RBK expression. B1RBK was upregulated after the injection of ADM and this upregulation was exacerbated in B2RBK-knockout animals. Furthermore, treatment with HOE-140 downregulated the B1RBK receptor. The blockage of B1RBK in B2RBK-knockout animals promoted FSGS regression, with a less-inflammatory phenotype. These results indicate a deleterious role of both kinin receptors in an FSGS model and suggest a possible cross-talk between them in the progression of disease.KEY WORDS: Focal and segmental glomerulosclerosis, Bradykinin receptors, Inflammation, Podocyte, Fibrosis  相似文献   

7.
8.
Renal transplantation is the only efficacious treatment for end-stage kidney disease. However, some people have developed renal insufficiency after transplantation, the mechanisms of which have not been well clarified. Previous studies have focused on patient factors, while the effect of gene expression in the donor kidney on post-transplant renal function has been less studied. Donor kidney clinical data and mRNA expression status were extracted from the GEO database (GSE147451). Weight gene co-expression network analysis (WGCNA) and differential gene enrichment analysis were performed. For external validation, we collected data from 122 patients who accepted renal transplantation at several hospitals and measured the level of target genes by qPCR. This study included 192 patients from the GEO data set, and 13 co-expressed genes were confirmed by WGCNA and differential gene enrichment analysis. Then, the PPI network contained 17 edges as well as 12 nodes, and four central genes (PRKDC, RFC5, RFC3 and RBM14) were identified. We found by collecting data from 122 patients who underwent renal transplantation in several hospitals and by multivariate logistic regression that acute graft-versus-host disease postoperative infection, PRKDC [Hazard Ratio (HR) = 4.44; 95% CI = [1.60, 13.68]; p = 0.006] mRNA level correlated with the renal function after transplantation. The prediction model constructed had good predictive accuracy (C-index = 0.886). Elevated levels of donor kidney PRKDC are associated with renal dysfunction after transplantation. The prediction model of renal function status for post-transplant recipients based on PRKDC has good predictive accuracy and clinical application.  相似文献   

9.
Focal segmental glomerulosclerosis (FSGS) is a pathological entity characterized by proteinuria, nephrotic syndrome, and the progressive loss of renal function. It is a common cause of end-stage renal disease (ESRD). Recently, familial forms of FSGS have been identified. Two families with autosomal dominant FSGS were evaluated for linkage using 351 genomic microsatellite markers. Linkage, multipoint analysis, and tests for heterogeneity were performed on the subsequent results. In addition, three small families were used for haplotype analysis. Evidence for linkage was found on chromosome 11q21-q22 for the largest family, with a maximum lod score of 9.89. The gene is currently localized to an 18-cM area between flanking markers D11S2002 and D11S1986. The disease in a second family was not linked to this locus or to a previously described locus on chromosome 19q13. There were no shared haplotypes among affected individuals in the three smaller families. Our findings demonstrate that genetic heterogeneity is prevalent in FSGS in that at least three genes cause the FSGS phenotype. Identification of the genes that cause familial FSGS will provide valuable insights into the molecular basis and pathophysiology of FSGS.  相似文献   

10.
白石  吕红红  杨峰  蒙军平  刘丽丽 《生物磁学》2012,(28):5484-5486
目的:观察不同血液透析方法对终末期肾病患者钙磷代谢的影响。方法:以120例终末期肾病患者为例,比较3种透析方式:血液透析、血液透析滤过、高通量血液透析(各40例)对终末期肾病患者的钙磷代谢及甲状旁腺素的影响。结果:3组透析方法中,HFHD、HDF组治疗前后血钙、磷含量差异有统计学意义,血钙升高,血磷、甲状旁腺素得到较好的清除(P〈0.05)。结论:HFHD、HDF透析使低钙血症改善,血清磷、PTH下降显著。这说明HF,HD、HDF透析对改善钙磷代谢紊乱有积极作用,能有效预防甲旁亢。  相似文献   

11.
12.
Polycystic kidney diseases (PKDs) comprise a large group of genetic disorders characterized by formation of cysts in the kidneys and other organs, ultimately leading to end-stage renal disease. Although PKDs can be caused by mutations in different genes, they converge on a set of common molecular mechanisms involved in cystogenesis and ciliary dysfunction, and can be qualified as ciliopathies. Recent advances in understanding the mechanisms regulating disease progression have led to the development of new therapies that are being tested in both preclinical and clinical trials. In this article, we briefly review a network of molecular pathways of cystogenesis that are regulated by ciliary functions. We discuss the mTOR pathway in depth, highlighting recent progress in understanding its role in PKD and the current results of clinical trials.  相似文献   

13.
Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p<0.01) coupled with a fold-change>1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.  相似文献   

14.
15.
Oxidative stress, inflammation, and fibrosis are involved in the development and progression of focal segmental glomerulosclerosis (FSGS), a common form of idiopathic nephrotic syndrome that represents a therapeutic challenge because it has a poor response to steroids. Antroquinonol (Antroq), a purified compound, is a major active component of a mushroom, namely Antrodia camphorata, that grows in the camphor tree in Taiwan, and it has inhibitory effects on nitric oxide production and inflammatory reactions. We hypothesized that Antroq might ameliorate FSGS renal lesions by modulating the pathogenic pathways of oxidative stress, inflammation, and glomerular sclerosis in the kidney. We demonstrate that Antroq significantly (1) attenuates proteinuria, renal dysfunction, and glomerulopathy, including epithelial hyperplasia lesions and podocyte injury; (2) reduces oxidative stress, leukocyte infiltration, and expression of fibrosis-related proteins in the kidney; (3) increases renal nuclear factor E2-related factor 2 (Nrf2) and glutathione peroxidase activity; and (4) inhibits renal nuclear factor-κB (NF-κB) activation and decreases levels of transforming growth factor (TGF)-β1 in serum and kidney tissue in a mouse FSGS model. Our data suggest that Antroq might be a potential therapeutic agent for FSGS, acting by boosting Nrf2 activation and suppressing NF-κB-dependent inflammatory and TGF-β1-mediated fibrosis pathways in the kidney.  相似文献   

16.
Hypertensive nephropathy (HN) and focal segmental glomerulosclerosis (FSGS) are significant causes of end-stage renal disease (ESRD), but no genes or loci have been associated with this phenotype among African Americans, a group at high risk. We performed a genomewide linkage scan with approximately 400 microsatellite markers on 23 individuals of a large four-generation African American family with 18 affected individuals (7 with ESRD), in which the 13-year-old proband (also with ESRD) presented with hypertension and proteinuria (2-4 g/day) and underwent a kidney biopsy that revealed FSGS-like lesions with arteriolar thickening. A genomewide scan revealed LOD scores of >2.5 for markers on chromosomes 3 and 9, and fine mapping was performed on 5 additional members (total 28 members) that showed a maximum multipoint LOD score of 5.4 in the 9q31-q32 region, under an autosomal dominant model with 99% penetrance. This 8-cM (6-Mb) region is flanked by markers D9S172 and D9S105, and further candidate gene sequencing studies excluded the coding regions of three genes (ACTL7A, ACTL7B, and CTNNAL1). To our knowledge, this is the first report of a locus, denoted as "HNP1," for the HN/FSGS phenotype in a large African American family with dominantly inherited nephropathy characterized by ESRD, hypertension, and some features of FSGS.  相似文献   

17.
Glomerular diseases lead to a progressive decline in renal function and account for the vast majority of end-stage kidney diseases. Injury and loss of glomerular podocytes are common determining factors of glomerular disease progression and renal failure. Podocytes are a primary glomerular target of toxic, immune, metabolic, and oxidant stress, but little is known of the factors that counteract cellular stress signaling pathways. This review focuses on recent findings that identify autophagy as a critical homeostatic and quality control mechanism maintaining glomerular homeostasis.  相似文献   

18.
19.
The aims of the present study were to elucidate a possible mechanism of kidney crystal formation by using a metabolic syndrome (MetS) mouse model and to assess the effectiveness of adiponectin treatment for the prevention of kidney crystals. Further, we performed genome-wide expression analyses for investigating novel genetic environmental changes. Wild-type (+/+) mice showed no kidney crystal formation, whereas ob/ob mice showed crystal depositions in their renal tubules. However, this deposition was remarkably reduced by adiponectin. Expression analysis of genes associated with MetS-related kidney crystal formation identified 259 genes that were >2.0-fold up-regulated and 243 genes that were <0.5-fold down-regulated. Gene Ontology (GO) analyses revealed that the up-regulated genes belonged to the categories of immunoreaction, inflammation, and adhesion molecules and that the down-regulated genes belonged to the categories of oxidative stress and lipid metabolism. Expression analysis of adiponectin-induced genes related to crystal prevention revealed that the numbers of up- and down-regulated genes were 154 and 190, respectively. GO analyses indicated that the up-regulated genes belonged to the categories of cellular and mitochondrial repair, whereas the down-regulated genes belonged to the categories of immune and inflammatory reactions and apoptosis. The results of this study provide compelling evidence that the mechanism of kidney crystal formation in the MetS environment involves the progression of an inflammation and immunoresponse, including oxidative stress and adhesion reactions in renal tissues. This is the first report to prove the preventive effect of adiponectin treatment for kidney crystal formation by renoprotective activities and inhibition of inflammation and apoptosis.  相似文献   

20.

Introduction

Systemic lupus erythematosus (SLE or lupus) is a chronic autoimmune disease, and kidney involvement with SLE, a.k.a. lupus nephritis (LN), is a frequent and severe complication of SLE that increases patient morbidity and mortality. About 50% of patients with SLE encounter renal abnormalities which, if left untreated, can lead to end-stage renal disease. Kidney biopsy is considered the criterion standard for diagnosis and staging of LN using the International Society of Nephrology/Renal Pathology Society (ISN/RPS) classification, which was developed to help predict renal outcomes and assist with medical decision-making. However, kidney biopsy-based classification of LN is highly invasive and impractical for real-time monitoring of LN status. Here, nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling was used to identify urinary metabolites that discriminated between proliferative and pure membranous LN as defined by the ISN/RPS classification, and between LN and primary focal segmental glomerulosclerosis (FSGS).

Methods

Metabolic profiling was conducted using urine samples of patients with proliferative LN without membranous features (Class III/IV; n = 7) or pure membranous LN (Class V; n = 7). Patients with primary FSGS and proteinuria (n = 10) served as disease controls. For each patient, demographic information and clinical data was obtained and a random urine sample collected to measure NMR spectra. Data and sample collection for patients with LN occurred around the time of kidney biopsy. Metabolic profiling analysis was done by visual inspection and principal component analysis.

Results

Urinary citrate levels were 8-fold lower in Class V LN compared to Class III/IV patients, who had normal levels of urinary citrate (P < 0.05). Class III/IV LN patients had > 10-fold lower levels of urinary taurine compared to Class V patients, who had mostly normal levels (P < 0.01). Class V LN patients had normal urinary hippurate levels compared to FSGS patients, who completely lacked urinary hippurate (P < 0.001).

Conclusions

This pilot study indicated differences in urinary metabolites between proliferative LN and pure membranous LN patients, and between LN and FSGS patients. If confirmed in larger studies, these urine metabolites may serve as biomarkers to help discriminate between different classes of LN, and between LN and FSGS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号