首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed pollen analysis and pine megafossils from the immediate area of Rødalen in Central Norway have revealed new knowledge of Holocene alpine environments. A period of about 1,000 years characterised by pioneer herbs, dwarf-shrubs (Betula nana, Empetrum) and Juniperus followed the Holocene climatic amelioration. Local birch forest became established around 10.3 ka b.p., ca 150 years earlier than the local pine rise. Pine dominated at 1,100 m a.s.l. from 9.9 to 8.5 ka b.p., followed by birch forests until 1.3 ka b.p. when deforestation occurred. Slightly after 6 ka b.p., pine forests disappeared from the valley floor (930 m a.s.l.), an area that today is dominated by birch forest. Three short-lasting vegetational set-backs at ca 10.7, 10.5 and 10.3 ka b.p. may indicate climate oscillations. A temporary reduction of local forests reflects the Erdalen 2/9.7 ka b.p. event. The influence of the 8.2 event, superimposed on a cooling trend, lasted ca 400 years and involved a two-step vegetational regression: (1) A strong reduction of pine forests due to cooling and (2) reduction of alder due to cold and drought. Winter stress preventing pine regeneration may have caused scarcity of pine megafossils from the latter period. In the early Holocene, vegetation in the present alpine region was not in equilibrium with temperature development. It is suggested that the birch forest establishment lagged by about 1,000 years due to drought, whereas winter stress may have delayed the establishment of pine even longer.  相似文献   

2.
Fire has been found to promote or halt biological invasions. Pine trees (genus Pinus) are highly invasive in the southern hemisphere and the effect of fire on their invasion ability is not clear. An analysis of Pinus spreading after wildfires in Patagonia reveals that there is a high risk of pines becoming invasive if ignition frequency increases in Patagonia. Also plantations could increase fire intensity and/or frequency in Patagonia, creating a potential positive feedback between invasion and wildfires. The effect of fires on pine invasion was modulated by precipitation. In areas where precipitation was lower than 800 mm fires did not promote pine invasion. However, in areas with higher precipitation there was a strong promotion of pine invasion by fire, after a lag time. These results show that fire, a disturbance more frequent now in the region, can promote pine invasion.  相似文献   

3.

Background and Aims

Mediterranean forests are vulnerable to numerous threats including wildfires due to a combination of climatic factors and increased urbanization. In addition, increased temperatures and summer drought lead to increased risk of forest fires as a result of climate change. This may have important consequences for C dynamics and balance in these ecosystems. Soil respiration was measured over 2 successive years in Holm oak (Quercus ilex subsp. ballota; Qi); Pyrenean Oak (Quercus pyrenaica Willd; Qp); and Scots pine (Pinus sylvestris L.; Ps) forest stands located in the area surrounding Madrid (Spain), to assess the long term effects of wildfires on C efflux from the soil, soil properties, and the role of soil temperature and soil moisture in the variation of soil respiration.

Methods

Soil respiration, soil temperature, soil moisture, fine root mass, microbial biomass, biological and chemical soil parameters were compared between non burned (NB) and burned sites (B).

Results

The annual C losses through soil respiration from NB sites in Qi, Qp and Ps were 790, 1010, 1380 gCm?2?yr?1, respectively, with the B sites emitting 43 %, 22 % and 11 % less in Qi, Qp and Ps respectively. Soil microclimate changed with higher soil temperature and lower soil moisture in B sites after fire. Exchangeable cations and the pH also decreased. The total SOC stocks were not significantly altered, but 6–8 years after wildfires, there was still measurably lower fine root and microbial biomass, while SOC quality changed, indicated by lower the C/N ratio and the labile carbon and a relative increase in refractory SOC forms, which resulted in lower Q10 values.

Conclusions

We found long term effects of wildfires on the physical, chemical and biological soil characteristics, which in turn affected soil respiration. The response of soil respiration to temperature was controlled by moisture and changed with ecosystem type, season, and between B and NB sites. Lower post-burn Q10 integrated the loss of roots and microbial biomass, change in SOC quality and a decrease in soil moisture.  相似文献   

4.
Analysis of charcoal from an archaeological assemblage near the Lukula community located at the southernmost boundary of the Mayombe forest (Bas-Congo, DRC) yielded 30 taxa used as firewood between 1,200 and 700 cal. b.p. Local people mentioned 71 taxa preferred for use nowadays. The identified taxa belong either to mature rainforest, pioneer forest, regenerating forest or woodland savanna, indicating that ancient and current local populations gathered firewood in several different forest types. Modern firewood preferences do not seem to agree with the archaeobotanical composition. Also, linguistic evidence does not indicate a long exploitation history for all of the recorded taxa. Furthermore, no particular wood qualities such as wood density, calorific value or magical or medicinal properties seem to determine the Lukula assemblage, which was probably composed of waste material from various activities which required different specific firewood characteristics. As such, taxa composition is not biased by human selection, suggesting that it reflects the surrounding environment, which was characterised by mature rainforest with patches of regenerating forest and open vegetation types. Unlike the origin of present-day forest-savanna mosaics from human activity, fragmentation around 1,000 cal. b.p. may have been provoked by a well-known climatic event coinciding with the Medieval Climate Anomaly, which undoubtedly had a significant impact on Central African forest composition.  相似文献   

5.
Woody plant demographics provide important insight into ecosystem state-shifts in response to changing fire regimes. In Australian tropical savannas, the switch from patchy landscape burning by Aborigines to unmanaged wildfires within the past century has been implicated in biodiversity declines including the fire-sensitive conifer, Callitris intratropica. C. intratropica commonly forms small, closed-canopy groves that exclude fire and allow recruitment of conspecifics and other fire-sensitive woody plants. C. intratropica groves provide a useful indicator of heterogeneity and fire regime change, but the mechanisms driving the species’ persistence and decline remain poorly understood. We examined the hypothesis that C. intratropica population stability depends upon a regime of frequent, low-intensity fires maintained by Aboriginal management. We combined integral projection models of C. intratropica population behaviour with an environmental state change matrix to examine how vital rates, grove dynamics and the frequency of high- and low-intensity fires contribute to population stability. Closed-canopy C. intratropica groves contributed disproportionately to population growth by promoting recruitment, whereas singleton trees accounted for a larger proportion of adult mortality. Our patch-based population model predicted population declines under current fire frequencies and that the recruitment of new groves plays a critical role in the species’ persistence. Our results also indicated that reducing fire intensity, a key outcome of Aboriginal burning, leads to C. intratropica population persistence even at high fire frequencies. These findings provide insight into the relationship between ecosystem composition and human–fire interactions and the role of fire management in sustaining the mosaics that comprise ‘natural’ systems.  相似文献   

6.
Droughts and forest fires, induced by the El Niño/Southern Oscillation (ENSO) event, have increased considerably over the last decades affecting millions of hectares of rainforest. We investigated the effects of the 1997–1998 forest fires and drought, associated with an exceptionally severe ENSO event, on fruit species important in the diet of Malayan sun bears (Helarctos malayanus) in lowland dipterocarp forest, East Kalimantan, Indonesian Borneo. Densities of sun bear fruit trees (≥10 cm DBH) were reduced by ~80%, from 167±41 (SD) fruit trees ha?1 in unburned forest to 37±18 fruit trees ha?1 in burned forest. Densities of hemi-epiphytic figs, one of the main fallback resources for sun bears during periods of food scarcity, declined by 95% in burned forest. Species diversity of sun bear food trees decreased by 44% in burned forest. Drought also affected sun bear fruit trees in unburned primary forest, with elevated mortality rates for the duration of 2 years, returning to levels reported as normal in region in the third year after the ENSO event. Mortality in unburned forest near the burn-edge was higher (25±5% of trees ≥10 cm DBH dead) than in the forest interior (14±5% of trees), indicating possible edge effects. Combined effects of fire and drought in burned primary forest resulted in an overall tree mortality of 78±11% (≥10 cm DBH) 33 months after the fire event. Disturbance due to fires has resulted in a serious decline of fruit resources for sun bears and, due to the scale of fire damage, in a serious decline of prime sun bear habitat. Recovery of sun bear populations in these burned-over forests will depend on regeneration of the forest, its future species composition, and efforts to prevent subsequent fire events.  相似文献   

7.
Late Quaternary vegetation, fire and climate dynamics were studied by pollen and charcoal analysis on a sediment core from near the summit of the Serra do Araçatuba at 1500 m elevation, part of the Serra do Mar coastal mountains of Paraná State, southern Brazil. Three radiocarbon dates indicate that clay and peat were deposited in a shallow basin during the last 14,880 b.p. Accumulation was probably continuous, but sedimentary gaps during the dry mid Holocene cannot be excluded. During late-glacial times the upper coastal mountain were covered with grassland, reflecting relatively dry and cold climatic conditions. Large areas of natural grasslands remained in the upper mountain region during the Holocene. Only after 2000 b.p. did Araucaria forest trees, specially Ilex, some Atlantic forest trees as well as the pioneer Myrsine move to higher elevations, reflecting markedly wetter climatic conditions. This expansion stopped and the forest areas were reduced significantly by human activities during about the last 200–300 years. The modern grassland vegetation of the uppermost mountains may reflect the natural setting, but may also partly result from post-Columbian human activities. Fires were rare during the late Pleistocene and even less frequent during the early and mid Holocene. During the wettest recorded period of the late Holocene fires increased markedly and are therefore most probably of anthropogenic origin.  相似文献   

8.
We provide a quantitative analysis of postoutbreak wildfire frequency within the confluence of the Yenisei and Angara rivers affected by the Siberian Silkmoth (Dendrolimus sibiricus Tschetv.). A catastrophic outbreak was observed in 1993–1996. It expanded to about 1 million ha and caused stand mortality on an area of about 460000 ha. For the outbreak area, the fire frequency was about 7 times higher when compared to the reference area; on the burned area, it was 20 times higher. The peak of fire activity within outbreak areas occurs in May–June, while that for undamaged coniferous stands is in July. The number of fires is correlated with the mean monthly air temperature (r = 0.65) of June. The area of fires displays a negative correlation with moisture conditions: precipitation (r =–0.53), drought index (SPEI: r =–0.57), and ground-cover moisture content (r =–0.57). Extensive fires prevail within outbreak areas (S > 1000 ha), while within the control there is a smaller area of fires. Multiple (reoccurring) wildfires are typical for pest outbreak areas. The area of these fires is related to their reoccurrence by logarithmic dependence (17% of the territory twice burned by forests fires, 5% on that burned three times, and 0.5% on that burned four times). Wildfires in the outbreak areas surpress the initial forest recovery by destroying the regeneration of conifers: 20 years after the outbreak, >90% of disturbed areas are occupied by grass–bush and small-leaved cenoses.  相似文献   

9.
A pollen diagram was constructed for the early- to mid-Holocene transition (ca. 7350–5600 cal. b.p./5400–3650 b.c.) from the Burmarrad ria located in NW Malta. The vegetation at ca. 7350–6960 cal. b.p./5400–5010 b.c. was characterized by an almost tree-less steppe-like open landscape. Early Holocene dry climatic conditions were most probably due to intensification of the subtropical monsoon circulation that strengthened the subtropical anticyclonic descent over the central Mediterranean and blocked the penetration of humid air masses from the North Atlantic Ocean. At ca. 6950 cal. b.p./5000 b.c., the steppe-like vegetation was suddenly replaced by a Mediterranean evergreen forest or dense scrub dominated by Pistacia cf. lentiscus trees. This event, which has simultaneously been recorded in southern Sicily, was most probably caused by the southward shift of the ITCZ permitting the eastward movement of the North Atlantic cyclonic systems. Traces of human activities are evident in the pollen diagram since the beginning of the record but become more pronounced from the onset of the Temple Cultural Phase at ca. 6050 cal. b.p./4100 b.c. with a gradual decline of tree pollen. We suggest that the early- to mid-Holocene vegetation transformation was mainly controlled by a regional climatic change that occurred in a landscape only slightly impacted by human activities.  相似文献   

10.
To better understand the response of forest vegetation to climate and fire regimes with reference to human activities over the last deglacial period in the Aso Caldera, central Kyushu, southwestern Japan, a 33.9 m long sediment core was examined in order to reconstruct the vegetational and fire history using pollen and charcoal analyses. The results show that a cool temperate broad-leaved deciduous forest, dominated by Quercus (deciduous oaks) with Carpinus and Fagus, prevailed in the Aso Valley from ca. 14.6 ka cal. b.p., indicating warming since the last glacial period. The landscape was presumably covered by a mosaic of deciduous Quercus forests and terrestrial Artemisia communities. Around 12.8–11.7 ka cal. b.p., Quercus dominated the forest and fires occurred frequently. Co-expansion of distinctive UlmusZelkova and CeltisAphananthe forests coupled with a progressive retreat of Quercus in the early Holocene could reflect a strengthening of the East Asian summer monsoon under mild and humid climate conditions. Around 8 ka cal. b.p., significant increases in Cyclobalanopsis (evergreen oaks), Castanopsis/Castanea and Podocarpus indicate a further warming, in particular an increased winter temperature. Warm temperate lucidophyllous forests, dominated by Cyclobalanopsis, flourished after 7.3 ka cal. b.p., probably corresponding to the “Holocene Climatic Optimum” interval. Progressive expansion of Quercus at the expense of Cyclobalanopsis began around 6.4 ka cal. b.p. and paralleled an increase in charcoal until ca. 4.8 ka cal. b.p.; this could be evidence of fire disturbance induced by the early-middle Jomon people. The disturbed evergreen forest experienced a temporary recovery but then opened again from 3.6 ka cal. b.p. due to extensive fire deforestation, as suggested by the high charcoal levels during this time. Human exploitation and buckwheat (Fagopyrum) agriculture may have contributed to the opening of the forest, which allowed secondary forests (primarily Pinus and Quercus) and herbaceous communities (mainly Poaceae) to spread. These results are discussed in comparison with other high-resolution pollen data from western Japan to better elucidate the vegetation and fire history over the last deglacial in the Aso Caldera.  相似文献   

11.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

12.

Key message

The post-fire growth responses and changes in wood C and N isotope composition depend on site water availability and fire severity in Mediterranean Aleppo pine forests.

Abstract

Mediterranean forests are subjected to recurrent wildfires and summer droughts. Under warmer and drier conditions, it is required to determine how Mediterranean pines recover after wildfires, and how this translates into changes in tree radial growth and function (e.g. intrinsic water-use efficiency—iWUE). We analysed four Aleppo pine areas located in SE Spain affected by 1994 wildfires and subjected to different water availability, ranging from mesic to semi-arid conditions. We combined dendrochronological analyses with δ13C and δ15N wood isotopes to quantify the changes in radial growth (expressed as Basal Area Increment—BAI) and functional responses (iWUE and N cycling) to three fire severities (unburned sites, low and medium severities). We expected that the post-fire release in nutrients and a reduction in competition for water would enhance radial growth. We found that fire did not significantly alter growth patterns at the driest sites, but increased BAI at the wettest sites. δ13C was significantly (P ≤ 0.01) more negative only in burned stands located at the wettest site indicating a decreased iWUE and thus improved water availability. However, the δ15N was higher in severely burned than in unburned plots from all sites but the wettest site, indicating a potential fertilization effect of fire in sites subjected to mild drought severity. Site water availability determined how fire affected subsequent modifications in growth and tree functioning of Aleppo pine forests, that is, changes in iWUE and N cycling. Therefore, site dryness should be explicitly considered to forecast the growth and functioning responses of Mediterranean pine forests to the predicted increasing recurrence of fire events due to global warming.
  相似文献   

13.
Thirty-one samples of transported Holocene Acropora cervicornis "sticks" sampled from carbonate sand tempestite accumulations at 19 sites along a 180-km-long stretch of the Florida reef tract were dated using the radiocarbon (14C) method. The "modern fossils" collected from just a few centimeters below the surface ranged in age from 0.5 to 6.4 ka. The majority lived between 3.5 and 5.5 ka. The time of transport and deposition is not known. There were no A. cervicornis samples centered around 4.5 ka. Acropora cervicornis is living on many Florida reefs, but the youngest tempestite sample was 500 years old. Two 500-year-long gaps in dated staghorn suggest that the documented decline in living A. cervicornis over the past 25 years may not be without precedent.  相似文献   

14.
Palozzi  Julia E.  Lindo  Zoë 《Plant and Soil》2017,420(1-2):277-287

Aims

Warming has the potential to alter plant litter mass loss and nutrient release during decomposition. However, a great deal of uncertainty remains concerning how other factors such as litter species or substrate quality might modify the effects of increased temperature on decomposition. Meanwhile, the temperature sensitivity of plant litter decay in tropical and subtropical forest ecosystems remains poorly resolved.

Methods

This study was designed to assess the effects of experimental warming on litter decomposition and nutrient release of two contrasting tree species (Schima superba and Machilus breviflora) by translocating model forest ecosystems from the high-elevation sites to the lower-elevation sites in subtropical China. Translocating model mountain evergreen broad-leaved forest (MEBF) to the altitude of 300 m and 30 m increased the average monthly soil temperature at 5 cm depth by 0.88 and 1.84 °C, respectively during the experimental period. Translocating model coniferous and broad-leaved mixed forest (CBMF) to the altitude of 30 m increased the average monthly soil temperature at 5 cm depth by 0.85 °C.

Results

We found that experimental warming accelerated litter decomposition in both model forest types, and the promoting efficiency was greater when the temperature increased. The litter with high quality (Schima superba) had stronger response to warming than low quality litter (Machilus breviflora). Warming accelerated Na, K, Mg, P, N and Ca release from Schima superba litter, but only simulated Ca release from Machilus breviflora litter. Overall, litter decomposition was controlled by the order: soil temperature > litter quality > soil moisture > litter incubation forest type under experimental warming in the subtropical China.

Conclusion

We conclude that leaf litter decomposition was facilitated by experimental warming in subtropical China. Litter species might modify the effects of increased temperature on litter decomposition; however, forest type has no effect on litter decomposition.
  相似文献   

15.
In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from ½ to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3–4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire.  相似文献   

16.
Although wildfires are important in many forested ecosystems, increasing suburbanization necessitates management with prescribed fires. The physiological responses of overstory trees to prescribed fire has received little study and may differ from typical wildfires due to the lower intensity and timing of prescribed fire in the dormant season. Trees may be negatively affected by prescribed fires if injury occurs, or positively affected due to reduced competition from understory vegetation and release of nutrients from partially consumed litter. We estimated sap flow and photosynthetic parameters before a late-March prescribed fire and throughout the growing season in burned and unburned pitch pine (Pinus rigida L.) sites in the New Jersey Pinelands to determine how water use and photosynthetic capacity were affected. Water use was similar between sites before the fire but 27 % lower in burned trees immediately following the fire. After about a month, water use in the burned site was 11–25 % higher than pines from the unburned site and these differences lasted into the summer. Photosynthetic capacity remained similar between sites but instantaneous intrinsic water use efficiency increased by 22 % and maximum Rubisco carboxylation rate (V cmax) was over three times greater in the summer compared to the pre-fire period in the burned site, whereas the unburned site exhibited similar V cmax and intrinsic water use efficiencies between pre-fire and summer measurements. These differences in physiology suggest that the prescribed fire altered the amount of water and nutrients that pines had access to and led to increased water use and water use efficiency; both of which are important in this water- and nutrient-limited ecosystem.  相似文献   

17.
Replacement of grasslands by forests may result in increased water consumption, and the magnitude of this will depend on stand density. To test this hypotheses and evaluate the impact of pine plantations on hydric resources in Patagonia Argentina, we measured over two seasons (1999–2000 and 2000–2001) and at two densities of ponderosa pine plantations (350 and 500 trees ha?1) the following variables: soil water content, leaf water potential (ψ), individual tree growth, individual sap flow, and response of sap flow density (u) to vapor pressure deficit (VPD). Stand transpiration (T) and whole-plant liquid-phase hydraulic conductance (L) were also estimated. Pre-dawn ψ varied from about –0.5 to –1.0 MPa. No differences were found in midday maximum u (1100–1800 hours) on clear days between the 2 measurement years, throughout each season, or between different densities of plantation. Sapflow density was also not correlated with soil water storage up to 1.4 m soil depth. Sapflow increased until VPD of about 2.3 kPa, and decreased at VPD >4 kPa, describing a hysteresis in the afternoon. Values of L in Patagonian trees were similar to those recalculated from published data for pines of the same height in the USA. Average stand transpiration increased with increased density (2.07 and 3.08 mm day-1 for 350 and 500 pines ha-1, respectively) and size of the trees. We conclude that ponderosa pines in Patagonia Argentina use more water, in a magnitude depending on the density of the trees, than native grasslands. Accordingly, ponderosa pines use deep water to maintain high water potential and transpiration rates even during the dry season.  相似文献   

18.

Key message

Using process-based models in combination with dendrochronological measurements provides a way to explain recent increased tree growth in northwestern China.

Abstract

Dendrochronological studies of tree rings in a 250-year-old Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains of northwestern China indicate a 60 % sustained increase in tree-ring growth between 1980 and 2009 compared with any time since 1785. Over the same period, the maximum, minimum, and average temperatures all increased by nearly 2 °C during the growing season (May through September), the frequency of frost decreased 18 days, precipitation remained unchanged, while atmospheric concentrations of CO2 increased by 48 ppm. To explain how the changes in climatic variables might cause the increase in tree growth, we parameterized a process-based growth model (3-PG, physiological processes predicting growth) with values from the literature and performed a series of sensitivity tests. The results of our analysis indicated that a reduction in frost frequency during the growing season, which allows stomata to remain open, enhanced gross photosynthesis by 42 %. Up to a 20 % increase in P G could be attributed to rising atmospheric CO2 between 1980 and 2009, with half of this attributed to increased light interception from a simulated 0.4 increase in canopy leaf area index. The increase in average and maximum temperatures had little direct effect on gross photosynthesis with the optimum temperature set between 9 and 10 °C. Indirectly, the increase in monthly average minimum temperature during the growing season, although small, crossed a threshold that reduced the impact of frost. Our analyses show the value of combining dendrochronological measurements with a process-based model to gain a more holistic understanding of how environmental factors interact to affect tree growth.
  相似文献   

19.
A pollen record was obtained from a coring site at La Correntina mire (54°33′S, 66°59′W, 206 m a.s.l.) to the east of Lago Fagnano, centre of Tierra del Fuego. The results indicate that the valley bottom was free of ice shortly before 15,400 cal bp. Pioneer vegetation included dwarf shrub heaths, grasses and herbs with sparsely distributed Nothofagus trees, indicative of dry conditions. Nothofagus expanded by 10,000 cal bp and the forest-steppe ecotone was established by 9,400 cal bp, implying warm conditions and an increase in available moisture. After ca. 5,000 cal bp, the development of a closed-canopy forest is interpreted as the result of wetter and colder conditions. After 3,000 cal bp, Nothofagus forest became more open, and by about 400 cal bp there was a further decline of the forest. A closed-canopy Nothofagus forest re-established after 400 cal bp.  相似文献   

20.

Key message

Although tree-ring chronologies of Cedrela fissilis and Cedrela angustifolia showed a common climatic signal, local conditions influence growth, suggesting that forest guidelines should be appropriate to the species and context.

Abstract

Cedrela species are highly valued because of the quality of their timber. Understanding the behaviour of each different Cedrela species and their ecology is of importance to ensuring that forest harvesting and management do not endanger the survival of natural populations. These species grow in a wide range of environmental gradients and different types of forests in Bolivia. This study used dendrochronological methods to analyse growth–precipitation relationships of two Cedrela species coming from three locations with different environmental conditions: dry Chiquitano (Concepción), Chiquitano transitional Amazonian (Guarayos), and Bolivian-Tucuman montane forests (Postrervalle). The rainy season in all locations runs from October to April and the dry season runs from May to September. Twelve Cedrela fissilis specimens were sampled from dry Chiquitano, 11 Cedrela fissilis specimens from Chiquitano transitional Amazonian, and 30 Cedrela angustifolia specimens from Bolivian-Tucuman montane forests. The samples were crossdated and exhibited a common signal between trees from three sites, despite tree rings from the Chiquitano transitional Amazonian forest being narrower and displaying blurred bands of parenchyma in the boundaries. Significant inter-series correlation was found for the C. fissilis species series from dry Chiquitano with r = 0.261 (p < 0.01) and Chiquitano transitional Amazonian forests with r = 0.284 (p < 0.01), and for Cedrela angustifolia from Bolivian-Tucuman montane forests with r = 0.374 (p < 0.01). Mean annual growth was 2.07, 1.92, and 2.82 mm year?1 at the three sites, respectively. Cedrela species from dry Chiquitano and Bolivian-Tucuman montane forests were sensitive to precipitation from October to April of the current growth year (wettest season) and to low temperatures from May to July of the current growth year (driest season). Samples from Chiquitano transitional Amazonian were more sensitive to precipitation during late rainy season (March, April, and May of the current growth year) and high temperatures during the rainy months (November–December). Growth differences between sites and species in response to climate variations and local conditions should be taken into account and handled with different forest management guidelines.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号