首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

2.
To examine the chromatin basis of imprinting in chromosome 15q11-q13, we have investigated the status of histone acetylation of the SNURF-SNRPN locus, which is a key imprinted gene locus in Prader-Willi syndrome (PWS). Chromatin immunoprecipitation (ChIP) studies revealed that the unmethylated CpG island of the active, paternally derived allele of SNURF-SNRPN was associated with acetylated histones, whereas the methylated maternally derived, inactive allele was specifically hypoacetylated. The body of the SNURF-SNRPN gene was associated with acetylated histones on both alleles. Furthermore, treatment of PWS cells with the DNA methyltransferase inhibitor 5-azadeoxycytidine (5-aza-dC) induced demethylation of the SNURF-SNRPN CpG island and restoration of gene expression on the maternal allele. The reactivation was associated with increased H4 acetylation but not with H3 acetylation at the SNURF-SNRPN CpG island. These findings indicate that (1) a significant role for histone deacetylation in gene silencing is associated with imprinting in 15q11-q13 and (2) silenced genes in PWS can be reactivated by drug treatment.  相似文献   

3.
4.
5.
In gene targeting studies of the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) domain in mouse ES cells, we recovered only recombinants with the paternal allele for constructs at exons 2 or 3 of the imprinted, maternally silenced Snurf-Snrpn gene. These sites lie close to the imprinting center (IC) for this domain. In contrast, recombinants for Ube3a within the same imprinted domain were recovered with equal frequency on the maternal and paternal alleles. In addition, gene targeting of the paternal allele for Snurf-Snrpn resulted in partial or complete demethylation in trans with activation of expression for the previously silenced maternal allele. The imprint switching of the maternal allele in trans is not readily explained by competition for trans-acting factors and adds to a growing body of evidence indicating homologous association of oppositely imprinted chromatin domains in somatic mammalian cells.  相似文献   

6.
7.
Genomic imprinting is the phenomenon in which the expression pattern of an allele depends on its parental origin. When maternally expressed and paternally expressed imprinted loci affect the same trait, the result is an arms race, with each locus under selection to increase its level of expression. This article develops a model of the deleterious consequences of this escalation, deriving from an increase in the variance in gene expression level, and resulting increase in phenotypic variance in the population. This phenomenon is referred to here as "conflict-induced decanalization." Modifiers that canalize gene expression are selectively favored, but these induce further escalation from both loci, resulting in a net increase in phenotypic variance and a reduction in population mean fitness. This results in a feedback loop, where increasing canalization of gene expression leads to increasing decanalization of the phenotype. This phenomenon may explain the surprisingly high frequency of certain diseases. Disorders to which this decanalization process might contribute include growth- and metabolism-related phenomena such as preterm birth, as well as certain major psychiatric disorders, including schizophrenia and autism.  相似文献   

8.
We isolated mutations in Arabidopsis to understand how the female gametophyte controls embryo and endosperm development. For the DEMETER (DME) gene, seed viability depends only on the maternal allele. DME encodes a large protein with DNA glycosylase and nuclear localization domains. DME is expressed primarily in the central cell of the female gametophyte, the progenitor of the endosperm. DME is required for maternal allele expression of the imprinted MEDEA (MEA) Polycomb gene in the central cell and endosperm. Ectopic DME expression in endosperm activates expression of the normally silenced paternal MEA allele. In leaf, ectopic DME expression induces MEA and nicks the MEA promoter. Thus, a DNA glycosylase activates maternal expression of an imprinted gene in the central cell.  相似文献   

9.
10.
DNA methylation is necessary for the silencing of endogenous retrotransposons and the maintenance of monoallelic gene expression at imprinted loci and on the X chromosome. Dynamic changes in DNA methylation occur during the initial stages of primordial germ cell development; however, all consequences of this epigenetic reprogramming are not understood. DNA demethylation in postmigratory primordial germ cells coincides with erasure of genomic imprints and reactivation of the inactive X chromosome, as well as ongoing germ cell differentiation events. To investigate a possible role for DNA methylation changes in germ cell differentiation, we have studied several marker genes that initiate expression at this time. Here, we show that the postmigratory germ cell-specific genes Mvh, Dazl and Scp3 are demethylated in germ cells, but not in somatic cells. Premature loss of genomic methylation in Dnmt1 mutant embryos leads to early expression of these genes as well as GCNA1, a widely used germ cell marker. In addition, GCNA1 is ectopically expressed by somatic cells in Dnmt1 mutants. These results provide in vivo evidence that postmigratory germ cell-specific genes are silenced by DNA methylation in both premigratory germ cells and somatic cells. This is the first example of ectopic gene activation in Dnmt1 mutant mice and suggests that dynamic changes in DNA methylation regulate tissue-specific gene expression of a set of primordial germ cell-specific genes.  相似文献   

11.
12.
13.
Imprinted genes play important roles in the mammalian development. In the parthenogenetic embryos (PE) there is only expression of maternally expressed genes. Therefore, PEs are appropriate experimental models to study genomic imprinting controlling mechanisms. The maternally expressed H19 and paternally expressed Igf2 are reciprocally imprinted genes in normal embryos. Here we studied effect of transforming growth factor alpha (TGFalpha) treatment in vitro (10 ng/ml at the morula stage) on the expression of Igf2/H19 locus in mice PE (9.5-days of gestation, 25 somites) and their placentas (PP). Using RT-PCR we showed that TGFalpha reactivated maternally imprinted Igf2 gene in parthenogenetic embryos and placentas. In spite of similar Tgfalpha expression in the pre-implantation stages, its expression in the 9.5-day parthenogenetic embryos is significantly less than in normal embryos (NE). In our experiments it was shown that reactivation of Igf2 gene occurred independently of H19 gene. In vitro TGFalpha treatment of mouse PE reactivated paternally expressed Igf2 gene in the PE and PP. In the PE and PP both Igf2 and H19 were expressed. It seems that TGFalpha can play an important role as modulator of the Igf2/H19 locus.  相似文献   

14.
The H19 imprinted gene is silenced when paternally inherited and active only when inherited maternally. This is thought to involve a cis-acting control region upstream of H19 that is responsible for regulating a number of functions including DNA methylation, asynchronous replication of parental chromosomes and an insulator. Here we report on the function of a 1.2 kb upstream element in the mouse, which was previously shown to function as a bi-directional silencer in Drosophila. The cre-loxP-mediated targeted deletion of the 1.2 kb region had no effect on the maternal allele. However, there was loss of silencing of the paternal allele in many endodermal and other tissues. The pattern of expression was very similar to the expression pattern conferred by the enhancer elements downstream of H19. We could not detect an effect on the expression of the neighbouring imprinted Igf2 gene, suggesting that the proposed boundary element insulating this gene from the downstream enhancers was unaffected. Despite derepression of the paternal H19 allele, the deletion surprisingly did not affect the differential DNA methylation of the locus, which displayed an appropriate epigenetic switch in the parental germlines. Furthermore, the characteristic asynchronous pattern of DNA replication at H19 was also not disrupted by the deletion, suggesting that the sequences that mediate this were also intact. The silencer is therefore part of a complex cis-regulatory region upstream of the H19 gene and acts specifically to ensure the repression of the paternal allele, without a predominant effect on the epigenetic switch in the germline.  相似文献   

15.
16.
17.
We present a model that considers the coevolution of genomic imprinting at a growth factor locus and an antagonistic growth suppressor locus. With respect to the two loci considered independently, our model makes the familiar predictions that an imprinted growth factor locus will only be expressed from the paternally derived allele and an imprinted growth suppressor locus only from the maternally derived allele. In addition, our coevolutionary model allows us to make predictions regarding the sequence of evolutionary events necessary for generating such a system. We conclude that imprinting at the growth factor locus preceded the evolution of growth suppressor function at the second locus, which in turn preceded imprinting at that locus. We then discuss the consistency of these predictions with currently available comparative data on the insulin-like growth factor 2 insulin-like growth factor 2 receptor system of mammals.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号