首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucocorticosteroid (GCS)-induced immunoglobulin (Ig) production in vitro is dependent on the functions of T cells and monocytes. T cells produce a replacing factor (TRF-S) which, with monocytes and a broad spectrum of concentrations (both above and below the physiologic range) of GCS, stimulates B cells to synthesize Ig. TRF-S is produced by T cells in cultures of mononuclear cells in the absence of stimulation over the initial 72 hr in culture. T cells, however, require the presence of monocytes or small quantities of interleukin 1 in order for the synthesis of TRF-S to occur. In addition to their role in stimulating TRF-S production, monocytes are also required in cultures of B cells responding to GCS and the cytokine. These experiments demonstrate that this monocyte function cannot be replaced by IL-1 or crude supernatants of monocyte cultures. Furthermore, exposure of TRF-S containing supernatants to oxidizing conditions does not alter the dependence of the cytokine on monocytes or GCS. Coculture of B cells and monocytes separated by a permeable membrane demonstrated that the influence of monocytes on GCS-induced Ig production is unlikely to be mediated by stable soluble factors. Thus, GCS-induced Ig production requires intimate contact between monocytes and B cells in the form of surface contact or unstable soluble mediators.  相似文献   

2.
Cyclosporin A (CsA) has been found previously to block mitogen-stimulated T cell proliferation and production of discrete T cell-derived lymphokines such as interleukin 2 (IL 2) and interferon (IFN)-gamma. In addition, CsA blocks pokeweed mitogen (PWM)-driven T cell-dependent differentiation of B cells into immunoglobulin (Ig)-secreting cells. Recently, we reported that CsA (1 microgram/ml) inhibited PWM-induced T cell production of IL 2 and IFN-gamma, but supernatants retained B cell differentiation factor (BCDF)-like activity. The present study demonstrates the ability of CsA to suppress T cell functions in PWM-driven Ig production in mononuclear cells (MNC), and the capacity of exogenous T cell lymphokines to reverse CsA-induced suppression. CsA profoundly suppressed PWM-driven PFC formation (greater than 95%). However, Ig production was substantially reconstituted by the addition of IL 2 at concentrations of 10 to 50 U/ml. In contrast, no effects were observed by the addition of IFN-gamma or BCGF. The kinetics of CsA inhibition of Ig production and IL 2 secretion were found to be closely related. In addition, to obtain effective reconstitution in the CsA-treated PWM-MNC system it was necessary to add IL 2 at the initiation of culture. T cells themselves were also required for B cell differentiation in this system. However, surface Ig+ cells obtained by cell sorting after 3 days of culture could differentiate in the absence of T cells but only in response to IL 2, not in response to IFN-gamma or BCDF. Thus, in PWM-driven B cell differentiation T cells are necessary early in culture, whereas IL 2 is essential from the initial stage of B cell activation through the final stage of B cell differentiation.  相似文献   

3.
Human interleukin 2 (IL 2, or T cell growth factor), which was free of lectin and interferon activity (IFN), induced human peripheral T lymphocytes to produce immune IFN (IFN-gamma). In contrast, non-T cells and macrophages did not produce IFN-gamma in response to IL 2. IL 2 acted directly on unstimulated T cells to induce IFN-gamma production, and also acted in synergy with a suboptimal dose (2 micrograms/ml) of concanavalin A (Con A) to enhance IFN-gamma production. The IFN-gamma-inducing activity of partially purified IL 2 was absorbed along with the IL 2 activity by murine IL 2-dependent CT-6 cell line cells. This further supports the view that IFN-gamma-inducing activity is identical to IL 2. When T cells were separated further into helper/inducer T4+ and suppressor/cytotoxic T8+ subsets by negative selection with monoclonal antibody and complement, both T4+ and T8+-enriched cells produced significant levels of IFN-gamma in response to IL 2. Complete removal of macrophages from purified T lymphocyte populations by treatment of OKM1 plus complement consistently reduced IFN-gamma production in response to IL 2 to a limited degree; readdition of macrophages restored IFN-gamma production by both T cell subsets. This observation that IL 2 contributes to the production of IFN-gamma by human lymphocytes suggests that a cascade of lymphocyte-cell interactions participates in human immune responses.  相似文献   

4.
Patients with gliomas exhibit deficient in vitro and in vivo T cell immune activity, and human glioblastoma culture supernatants (GCS) inhibit in vitro T lymphocyte responses. Because APC are essential for initiating and regulating T cell responses, we investigated whether GCS would affect cytokines produced by monocytes and T cells from healthy donors of PBMC. Incubation of PBMC with GCS decreased production of IL-12, IFN-gamma, and TNF-alpha, and increased production of IL-6 and IL-10. The GCS-induced changes in IL-12 and IL-10 occurred in monocytes, and involved changes in IL-12 p40 and IL-10 mRNA expression. Incubation with GCS also resulted in reduced expression of MHC class II and of CD80/86 costimulatory molecules on monocytes. The immunosuppressive effects were not the result of IL-6 or TGF-beta1 that was detected in GCS. However, it was due to a factor(s) that is resistant to pH extremes, differentially susceptible to temperature, susceptible to trypsin, and has a minimum molecular mass of 40 kDa. Our findings show that glioblastoma-generated factors that are known to suppress T cell responses alter the cytokine profiles of monocytic APC that, in turn, inhibit T cell function. This model indicates that monocytes can serve as an intermediate between tumor-generated immune-suppressive factors and the T cell responses that are suppressed in gliomas.  相似文献   

5.
Leukotriene B4 (LTB4) has been shown to modulate lymphocyte responses in both a positive and a negative way, depending on the particular cell subsets it interacts with. Recent evidence also indicates that LTB4 can directly affect the production of cytokines such as interleukin 1 (IL 1) or interleukin 2 (IL 2) and interferon-gamma (IFN-gamma). In this report, we present evidence that human T cells pulsed with LTB4 modulate IL 1 production by human monocytes by secreting IFN-gamma. In fact, we found that LTB4-pulsed T cells were capable of inducing a suppression of lymphocyte proliferation if allowed to interact with monocytes, but that this suppression was reversed to an enhancing effect when monocytes were treated with the cyclooxygenase inhibitor indomethacin. Furthermore, LTB4-pulsed T cells released a soluble factor that would mediate both effects. This factor was found to be IFN-gamma, because affinity-purified IFN-gamma could reproduce the effects, and a rabbit polyclonal anti-serum to human IFN-gamma could block the activities of supernatants from LTB4-pulsed T cells. LTB4 was also shown to enhance IFN-gamma production by T4+ T cells and to inhibit IFN-gamma production by T8+ T cells. These results suggest that LTB4 may regulate immune cell functions by inducing IFN-gamma production by T4+ cells.  相似文献   

6.
Monocyte complement stimulator (MCS), a product of T lymphocytes, is defined by its ability to stimulate the synthesis and secretion of the second complement component (C2) by monocytes. Most macrophage-activating factor (MAF) activity present in lymphokine-rich culture supernatants has recently been found to be due to interferon-gamma (IFN-gamma). We therefore hypothesized that IFN-gamma may have MCS activity as well. We tested recombinant, E. coli-derived, human IFN-gamma (rIFN-gamma) for its effects on C2 production by adherent peripheral blood monocytes and U937 cells, a human monocytic cell line. Recombinant IFN-gamma in concentrations ranging from 0.1 to 300 U/ml (0.003 to 8.8 ng/ml) stimulates C2 production by both cell populations. Exposure of responding cells for at least 24 hr is required for maximal stimulation. To determine the contribution of IFN-gamma toward total MCS activity in crude lymphokine-rich supernatants, we employed a solid-phase immunoabsorption technique with the use of a monoclonal anti-IFN-gamma antibody. This technique removed all IFN-gamma detectable by a sensitive ELISA, but MCS activity was decreased by only 40 to 50%. Additionally, MCS activity of these supernatants did not correlate with IFN-gamma content as determined by ELISA. By using another method to eliminate IFN-gamma activity, acid dialysis destroyed all rIFN-gamma activity, as measured by stimulation of U937 C2 synthesis, but eliminated only 30 to 67% of MCS activity from crude lymphokine preparations. Thus IFN-gamma stimulates C2 production by monocytes and U937 cells and apparently accounts for some, but not all, MCS activity present in lymphokine-rich supernatants. Other lymphokines are present in such supernatants that also possess this activity.  相似文献   

7.
In certain human IgM and IgG cell lines, immunoglobulin (Ig) secretion is highly stimulated by a B cell inducing factor (BIF) that is free of interleukin 2 (IL 2). BIF also induces Ig secretion in purified peripheral blood B cell populations that have been mitogenically stimulated by Staphylococcus aureus bacteria. Low concentrations of IL 2 (less than 20 U/ml) are not active in these systems. We now show that IL 2 at concentrations above 100 U/ml can induce Ig secretion in these blood B cells and B cell lines. Both conventional IL 2, purified from the human JURKAT and gibbon MLA-144 cell lines, and recombinant IL 2 are active. Very high concentrations approaching 10(4) U/ml are optimal for Ig secretion. Antibody to the T cell IL 2 receptor, anti-Tac, did not inhibit stimulation of the IgM cell line SKW6.4 by IL 2, and no Tac antigen was detected on the cells. The 9B11 monoclonal anti-IL 2 antibody that neutralizes T cell growth activity also abrogates stimulation of Ig secretion by conventional and recombinant IL 2 in the SKW6.4 cell line. However, the 1H11 monoclonal anti-(conventional thr3-glycosylated IL 2), which does not neutralize T cell growth activity, does inhibit induction of Ig secretion by the corresponding IL 2 in the B cell line. These results suggest that IL 2 stimulates B cells via a low-affinity interaction with a receptor different from the Tac receptor identified on T cells, and that the active site on the IL 2 molecule for B cells differs from that for T cell targets. If IL 2 promotes Ig secretion by binding with a low affinity to the B cell BIF receptor, IL 2 and BIF could be homologous proteins.  相似文献   

8.
Culture supernatants from several subclones of a human T hybrid line (24A) stimulated with PMA showed co-stimulatory activity in the proliferation of Con A-stimulated murine thymocytes, but did not show any IL 2 activity. Some subclones did not show co-stimulatory activity even when stimulated with PMA, excluding the possibility of a carry-over effect. The factor found in the culture supernatants increased IL 2 production in normal T cells stimulated with a suboptimal concentration of PHA. The factor also induced IL 2 production in a T hybrid clone, T-394.1, when the latter was stimulated with a suboptimal concentration of mitogens, indicating a direct effect by this T cell-derived factor on mitogen-stimulated T cells inducing IL 2 production. This factor also induced the generation of other lymphokines such as BCDF and IFN-gamma. Northern blot analysis showed that the factor induced an increase in mRNA for IL 2 as well as IL 2 receptor. These results indicated that T cells could secrete a factor with IL 1-like activity. However, Northern blot analysis showed that mRNA from a T hybrid clone does not cross-react with cDNA for IL 1 (beta) derived from human monocytes.  相似文献   

9.
Unstimulated peripheral blood mononuclear cells from patients with angiocentric T cell immunoproliferative disorders and concanavalin A-stimulated normal peripheral blood mononuclear cells secrete a phagocytosis-inducing factor (PIF) that induces a fivefold to 50-fold enhancement of phagocytosis of IgG-coated ox red blood cells by U937 cells. We investigated the identity, production, and mechanism of the action of PIF. PIF activity was demonstrated in supernatants from nine of 44 phytohemagglutinin-stimulated interleukin 2 (IL 2)-dependent T cell lines and clones derived from purified T4+ cells, but was not found in supernatants from 26 lines and clones derived from phytohemagglutinin-stimulated T8+ cells. In addition, PIF was produced by four of four antigen-specific T cell lines and clones after stimulation with the appropriate antigen and antigen-presenting cells, and by HUT-102, a human T cell lymphotropic virus type I-transformed T cell line. PIF from all of these sources caused significant inhibition of U937 proliferation. This proliferation-inhibiting activity co-purified with phagocytosis-enhancing activity in sizing procedures and isoelectric focusing, which yielded an estimated m.w. of 35,000 to 55,000 and an estimated isoelectric point of 5.0 to 6.0 for PIF. In contrast, IL 2, recombinant interferon-alpha, and recombinant interferon-gamma had no effect on phagocytosis by U937 cells, and antibodies to interferon-alpha and interferon-gamma did not block the phagocytosis-inducing activity of PIF-containing supernatants. PIF appears to be a distinct lymphokine produced by a subset of T4+ lymphocytes, possibly those that proliferate in response to antigen. PIF may be important in the induction of erythrophagocytosis, which is associated with certain T cell immunoproliferative disorders.  相似文献   

10.
The induction of cytotoxic T lymphocytes (CTL) from CTL precursors requires a combination of antigen and lymphokine signals. To investigate lymphokine requirements for CTL generation, we used an assay in which helper T cell and accessory cell-depleted spleen cells or whole thymocytes were cultured with lectin (Con A) and lymphokines. This culture was followed by assessment of lectin-dependent cytolysis. High concentrations of recombinant interleukin 2 (R-IL 2) (100 U/ml) alone were not sufficient for lectin-mediated CTL induction from thymocytes, whereas 20 to 100 U/ml of R-IL 2 alone could induce a significant lectin-mediated CTL response from accessory cell-depleted spleen cells. Using thymocytes as responders, we found purified or recombinant interferon-gamma (IFN-gamma) did not cause cytolytic activity either in the absence of or in the presence of R-IL 2. However, supernatant from Con A-stimulated rat spleen cells (rat Con A SN) in combination with R-IL 2 could induce cytolytic activity, suggesting that several factors are required for CTL induction. Con A SN was fractionated by gel filtration and the fractions were tested for ability to induce CTL. In the presence of a low level of R-IL 2 (5 U/ml), fractions with a Mr of approximately 31,000 could induce CTL, and this activity was referred to as CTL differentiation factor (CDF). The peak fractions containing CDF activity did not have detectable IL 1, IL 2, IFN-gamma, or CSF activity. However, by add-back experiments and the use of blocking antibodies, a monoclonal antibody against the IL 2 receptor or antibodies against murine IFN-gamma, we demonstrated that CTL induction from mature thymocytes (L3T4-, Lyt-2+) requires CDF activity in addition to IL 2 and IFN-gamma.  相似文献   

11.
T cell hybridoma lines were constructed by fusion of Mycobacterium tuberculosis-primed and boosted BALB/c T cells with the AKR-derived T lymphoma cell line BW5147. Certain of the hybridomas prepared in this manner secreted constitutively into their culture supernatants biologically active molecules that displayed precursors of cytotoxic T cell activating properties characteristic of killer-helper factor (KHF). Cell surface analysis revealed that the hybridomas were indeed somatic cell hybrids between the two respective partner cells used for fusion. KHF properties of these hybridoma supernatants were verified by their capacity to stimulate peanut agglutinin-binding (PNA+) C3H/He thymocytes to respond in vitro to 2,4,6-trinitrophenyl(TNP)-modified syngeneic stimulator cells in conjunction with suboptimal doses (10 U/ml) of interleukin 2 (IL 2) for the generation of H-2-restricted, TNP-reactive cytotoxic T cells. The biologically active molecules secreted by a T cell hybrid clone (2Y4) were, like conventional KHF, distinct from IL 1, IL 2, or immune interferon (IFN-gamma). The partially purified KHF derived from 2Y4 cells shows activity at apparent m.w. range of 34,000 to 60,000 on gel permeation, and is relatively homogeneous with respect to isoelectric point, which was approximately 4.5 to 4.7. The partially purified 2Y4-KHF is able to augment proliferation of as well as the expression of IL 2 receptors on PNA+ thymocytes in conjunction with IL 2. Finally, addition of 2Y4-KHF on day 0, followed by the addition of IL 2 on day 2 for 7 days of culture was effective in generating potent CTL responses, whereas addition of IL 2 on day 0, followed by the addition of 2Y4-KHF on day 2 to the culture was ineffective.  相似文献   

12.
Human peripheral blood monocytes were stimulated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) alone or in combination. Stimulated but not resting monocytes displayed the Tac peptide of the interleukin 2 (IL 2) receptor within 24 hr as measured by immunofluorescence staining and [3H] Tac binding. The total number of anti-Tac binding sites on co-stimulated monocytes was 13,700. By using scatchard analysis with radiolabeled IL 2, the activated cells were shown to express low numbers (below 100 sites/cell) of high affinity binding sites with a KD of approximately 15 pM. LPS and IFN-gamma were additive in augmenting the number of IL 2 and anti-Tac binding sites. By using an ELISA assay specific for the soluble released form of the Tac peptide we identified 112 U/ml of IL 2 receptors in the supernatant of monocytes stimulated for 24 hr with IFN-gamma, 233 U/ml after stimulation with LPS, and 519 U/ml after the addition of both stimulating agents. Both the membrane form (55,000 daltons), as well as the soluble form (45,000 to 50,000 daltons) of the Tac, IL 2 receptor, peptide from monocytes were shown by immunoprecipitation and gel electrophoresis to be similar size to the comparable forms of these receptors derived from activated T cells. In addition, monocytes stimulated for 8 hr contained mRNA specifically hybridizing to a cDNA probe coding for the Tac peptide. Finally, activated monocytes responded to the addition of recombinant IL 2 by an increase in H2O2 production that was measured by using fluorescent indicator 2,7-dichlorofluorescein. This response as well as the observed induction of monocytic IL 2 receptors by LPS may point to a functional role for this receptor during monocyte/macrophage responses to microbial infections.  相似文献   

13.
Peripheral blood monocytes obtained from paracoccidioidomycosis patients and healthy individuals were preactivated with recombinant gamma interferon (IFN-gamma) in different concentrations (250, 500 and 1000 U/ml) and evaluated for fungicidal activity against Paracoccidiodes brasiliensis strain 18 (Pb 18, high-virulence strain) and strain 265 (Pb 265, low-virulence strain) by plating of cocultures and counting of colony-forming units, after 10 d. Monocytes from healthy individuals failed to present fungicidal activity against P. brasiliensis even after IFN-gamma activation at the three concentrations. However, patient monocytes activated with IFN-gamma (1000 U/ml) showed a significant fungicidal activity when compared to that obtained with non-activated or activated cells with other IFN-gamma concentrations (250 and 500 U/ml). Moreover, patient monocytes presented higher fungicidal activity than the control, even before the activation process. These results may be explained by the activation state of patients' cells as a function of the in vivo contact with the fungus, which was confirmed by their higher capacity to release H(2)O(2) in vitro. Unlike the results obtained with Pb 18, patient and control cells presented a significant fungicidal activity against Pb 265, after priming with IFN- gamma. These results are explained by the higher levels of TNF-alpha in supernatants of cultures challenged with Pb 265. Moreover, higher levels of the cytokine were obtained in patient cell supernatants. Taken together, our results suggest that for effective killing of P. brasiliensis by monocytes, an initial activation signal induced by IFN-gamma is necessary to stimulate the cells to produce TNF-alpha. This cytokine may be involved, through an autocrine pathway, in the final phase activation process. The effectiveness of this process seems to depend on the virulence of the fungal strain and the activation state of the challenged cells.  相似文献   

14.
Epstein Barr virus (EBV)-infection of normal peripheral blood mononuclear cells (PBMC) in vitro induces IFN-alpha secretion from B cell and natural killer (NK) cell populations, and IFN-gamma secretion from T cells. IFN-gamma depends on prior elaboration of IL 2 and IL 1 that originates from monocytes and NK cells. PBMC from rheumatoid arthritis (RA) patients released moderately elevated levels of IFN-alpha (236 +/- 62 U/ml vs 168 +/- 34 in normals). In contrast, IFN-gamma was significantly lower in RA (88 +/- 34 U/ml vs 209 +/- 32) with an associated deficit in IL 2. A monocyte-dependent factor was shown to be responsible for this deficit, since monocyte depletion of RA cultures normalized the levels of IL 2 and IFN-gamma. Significantly lower levels of IL 1 activity were present in the supernatants of RA PBMC cultures as compared with normal cultures, and this was shown to be associated with presence of a nondialyzable IL 1 inhibitor. This inhibitor was capable of preventing the IL 1-dependent synthesis of IL 2 and IFN-gamma by normal PBMC. Exogenous IL 1 or IL 2 restored the deficient IFN-gamma secretion in RA PBMC. Thus, the deficient ability of RA lymphocytes to control EBV infection may be secondary to impairment of a monocyte-T cell interaction at the level of IL 1.  相似文献   

15.
We have previously demonstrated that differentiation of CD8+ Tp44- suppressor cells in pokeweed mitogen (PWM)-stimulated cultures requires soluble factors elaborated by CD4+ cells and monocytes, and that the monocyte signal for such differentiation can be replaced by prostaglandin E2 (PGE2). In this study, we explored the ability of interleukin 2 (IL 2) and interferon-gamma (IFN-gamma) to replace the CD4+ signal. When IL 2 or IFN-gamma was used at concentrations equivalent to those present in supernatants of PWM-pulsed cultures of CD4+ cells, no effect on differentiation of CD8+ cells was observed. However, a potent suppressor inducing activity was detected when IFN-gamma, but not IL 2, was mixed with supernatants derived from cultures of PWM-pulsed purified monocytes (M phi sup) or with 10(-8) M PGE2. Differentiated CD8+ suppressor cells (Ts) inhibited both PWM-stimulated proliferative response of CD4+ cells and immunoglobulin production by B cells. The signals mediated by the M phi sup or PGE2 and IFN-gamma were shown to act sequentially. That is, M phi sup or PGE2 was required initially, followed by an IFN-gamma-dependent differentiative step. These studies thus suggest a cascade of cellular interactions involving monocytes, CD4+ cells, and CD8+ Ts precursors that are required for the differentiation of CD8+ suppressor effector cells.  相似文献   

16.
Supernatants (SN) of well-washed adherent human monocytes, obtained from T cell-depleted peripheral blood mononuclear cells, contain a 30,000 dalton protein (30 KD MF) that increases immunoglobulin (Ig) synthesis by EBV-activated B cells two- to fourfold. This factor is released spontaneously during the first 20 hr after monocytes are placed in culture. SN containing 30 KD MF are inactive in the thymocyte co-stimulator assay, under conditions that will detect as little as 0.5 U of purified IL 1. The addition of autologous T cells to isolated adherent monocytes, previously depleted of T cells, suppresses the release or activity of this B cell stimulator in a dose-dependent manner. In addition, 30 KD MF stimulates a two- to fourfold increase in IgA production by cells of an EBV-transformed B cell line (JB/FF line) without increasing incorporation of [3H]thymidine. In contrast, stimulation of this B cell line with up to 10 U of purified IL 1 increases IgA synthesis by less than 50%, and addition of up to 100 U of recombinant IL 2 causes no change whatsoever in IgA production. However, co-stimulation with 30 KD MF and recombinant IL 2 or recombinant gamma-interferon induces more Ig production than is caused by the monocyte factor alone. These observations suggest that the monocyte, in addition to acting as an antigen-presenting cell and source of IL 1, facilitates B cell differentiation by producing a factor which acts both independently and in synergy with cytokines produced by T cells to stimulate Ig production by B lymphocytes.  相似文献   

17.
Polyamine synthesis occurs early in lymphocyte activation after stimulation with antigen or mitogen. Ornithine decarboxylase (ODC) is the primary enzyme in the polyamine cascade. We have examined the induction of ODC by mitogens and/or lymphokines in human peripheral blood T lymphocytes. When isolated populations of monocytes and T lymphocytes were stimulated with phytohemagglutinin (PHA) there was little or no change in ODC activity. The combination of T lymphocytes and monocytes enhanced mitogen-induced ODC activity 10-fold. Several interleukin 1 (IL 1)-containing supernatants and fractionated human IL 1 were capable of substituting for monocytes in supporting PHA induction of ODC in T lymphocytes. Interleukin 2 (IL 2) and IL 2-containing supernatants were also capable of increasing ODC activity in T lymphocytes in the absence of monocytes. Lymphokines alone in the absence of PHA could not induce ODC. We conclude that both mitogens and monocytes are required for the induction of polyamine synthesis in T lymphocytes, and that supernatants containing IL 1 or IL 1 and IL 2 can substitute for monocytes in the induction of ODC in mitogen-stimulated T lymphocytes.  相似文献   

18.
The presence of Tac-antigen (Tac-Ag) on human B lymphocytes and its functional significance with regard to the ability of interleukin 2 (IL 2) to modulate B cell differentiation is currently an area of high interest. An Epstein-Barr virus-transformed B cell line (CB) that secretes IgG was 30 to 40% Tac-Ag+ and was used as a model for examining the role of Tac-Ag and IL 2 in B cell differentiation. Recombinant IL 2 alone was found to have a modest but significant effect on CB in enhancing IgG secretion, increasing the plaque-forming cell response from 637 to 1734 at high concentrations (1000 U/ml IL 2) and to 888 at lower concentrations (100 U/ml). In contrast, recombinant interferon-gamma (IFN-gamma) alone had no effect on the differentiation of CB. However, both factors together showed marked synergy in increasing the number of plaque-forming cells to over 3000 by using only 10 U/ml of IFN-gamma and 100 U/ml of IL 2. These two factors were shown to act sequentially in that IL 2 was needed initially, while IFN-gamma was required for the next differentiation step into IgG-secreting cells. The effect of IL 2 on stimulating differentiation was blocked by anti-Tac, indicating that the action of IL 2 is mediated through its Tac-Ag receptor. CB cells were also sorted into Tac+ and Tac- populations and were cultured separately. In 2 wk, both populations reverted to the pattern of the original cell line. Moreover, cell cycle analysis when using double staining procedures indicated that Tac-Ag on the cell surface of CB appears and disappears according to the stage of the cell cycle, and that Tac is most strongly expressed in the S and G2 + M phases. Thus, the present study suggests that certain B cells are capable of responding to sequential stimulation by IL 2 and IFN-gamma with terminal differentiation into Ig-secreting cells, and that the amount of Tac-Ag expression is cell cycle dependent.  相似文献   

19.
A soluble product from cloned human T lymphocytes is capable of stimulating U937 cells, a line of human monocytes, to produce interleukin 1 (IL 1). We previously reported that U937 cells exposed to T lymphocyte-conditioned medium secrete mononuclear cell factor (MCF), which increases collagenase and prostaglandin E2 production by adherent rheumatoid synovial cells. Whereas structural and functional homologies between lymphocyte-activating factor (LAF, or IL 1) and MCF were described, previous attempts to measure LAF secretion by lymphokine-stimulated U937 cells were unsuccessful. Although the crude supernatants of cultured U937 cells exposed to medium from lectin-stimulated peripheral blood or cloned T lymphocytes contained MCF activity, no LAF activity was detected. After these crude supernatants were chromatographed on Ultrogel AcA54, however, and the fractions were individually assayed for IL 1, MCF and LAF activities were coeluted with apparent m.w. approximately 14,000 to 23,000. The inability to detect LAF activity in the unfractionated medium was accounted for by an inhibitor of lymphocyte proliferation present in fractions of higher m.w. The T lymphocyte product that stimulated U937 cell maturation and monokine production was secreted in response to lectin-stimulation in a dose-dependent fashion. Although we have previously demonstrated that the hormone 1,25-dihydroxyvitamin D3 caused maturational changes in U937 cells, and other investigators have reported effects of alpha and gamma interferon, these changes are dissociable from IL 1 production. Thus, a distinct lymphocyte-derived signal, necessary for the production of IL 1 by U937 cells, can be identified and dissociated from other biologic products that cause "maturational" changes. The detection of LAF activity in U937 cell supernatants requires the removal of an inhibitor of lymphocyte proliferation.  相似文献   

20.
An understanding of T cell responses that are crucial for control of Mycobacterium tuberculosis (MTB) has major implications for the development of immune-based interventions. We studied the frequency of purified protein derivative (PPD)-specific CD3) cells expressing interleukin-2 (IL)-2, gamma interferon (IFN)-gamma, tumor necrosis factor (TNF)-alpha and IL-10 in HIV-negative pulmonary tuberculosis patients (TB, n=30) as well as in healthy individuals (controls, n=21) from Central Africa. Increased frequencies of PPD-stimulated CD3+ cells expressing IL-2, IFN-gamma, and TNF-alpha in TB were seen when compared with frequencies of controls. The presence of type 1 cytokine biased responses in TB patients was supported by a shift in the distribution pattern of cytokine expression from exclusively IL-2 or TNF-alpha expression seen in controls towards an increased frequency of IFN-gamma/IL-2 or IFN-gamma/TNF-alpha co-expression in TB. Higher levels of PPD-induced IFN-gamma in the supernatants from TB patients than from controls were found, which correlated with its intracellular expression. PPD was a weak inducer of IL-10 in T cells and insufficient in promoting cytokine production in TCRgammadelta+CD3+ cells. Non-specific stimulation with PMA and ionomycin revealed increased frequencies of CD4+ cells expressing IFN-gamma in controls, while expression of IL-2, IL-4, IL-10, IL-13, and TNF-alpha was not different. Non-specific cytokine responses of TCRgammadelta+CD3+ cells were similar in all groups. Pulmonary TB in Central Africa is associated with enhanced expression and secretion of specifically induced cytokines that are frequently implicated in host defense against MTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号