首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We are creating families of designer G protein-coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (G(s), G(i) and G(q)). We review these advances here to facilitate the use of these powerful and diverse tools.  相似文献   

2.
Recently, G protein-coupled receptors activated solely by synthetic ligands (RASSLs) have been introduced as new tools to study Galpha(i) signaling in vivo (1, 2). Also, Galpha(s)-coupled G protein-coupled receptors have been engineered to generate Galpha(s)-coupled RASSLs (3, 4). In this study, we exploited the differences in binding pockets between different classes of H(1) receptor agonists and identified the first Galpha(q/11)-coupled RASSL. The mutant human H(1) receptor F435A (6.55) combines a strongly decreased affinity (25-fold) and potency for the endogenous ligand histamine (200-fold) with improved affinities (54-fold) and potencies (2600-fold) for 2-phenylhistamines, a synthetic class of H(1) receptor agonists. Molecular dynamics simulations provided a mechanism for distinct agonist binding to both wild-type and F435A mutant H(1) receptors.  相似文献   

3.
To better understand G-protein-coupled receptor (GPCRs) signaling, cellular and animal physiology, as well as gene therapy, a new tool has recently been proposed. It consists of GPCR mutants that are insensitive to endogenous ligands but sensitive to synthetic ligands. These GPCRs are called receptor activated solely by synthetic ligands (RASSL). Only two examples of such engineered receptors have been described so far: one G(i)-coupled (opioid receptors) and one G(s)-coupled (beta(2)-adrenergic receptors). Here, we describe the first RASSL related to serotonin receptors (D100(3.32)A G(s)-coupled 5-HT(4) receptor or 5-HT(4)-RASSL). 5-HT(4)-RASSL is generated by a single mutation, is totally insensitive to serotonin (5-HT), and still responds to synthetic ligands. These ligands have affinities in the range of nanomolar concentrations for the mutant receptor and exhibit full efficacy. More interestingly, two synthetic ligands behave as antagonists on the wild type but as agonists on the 5-HT(4)-RASSL.  相似文献   

4.
The molecular and functional diversity of G protein-coupled receptors is essential to many physiological processes. However, this diversity presents a significant challenge to understanding the G protein-mediated signaling events that underlie a specific physiological response. To increase our understanding of these processes, we sought to gain control of the timing and specificity of G(s) signaling in vivo. We used naturally occurring human mutations to develop two G(s)-coupled engineered receptors that respond solely to a synthetic ligand (RASSLs). Our G(s)-coupled RASSLs are based on the melanocortin-4 receptor, a centrally expressed receptor that plays an important role in the regulation of body weight. These RASSLs are not activated by the endogenous hormone alpha-melanocyte-stimulating hormone but respond potently to a selective synthetic ligand, tetrahydroisoquinoline. The RASSL variants reported here differ in their intrinsic basal activities, allowing the separation of the effects of basal signaling from ligand-mediated activation of the G(s) pathway in vivo. These RASSLs can be used to activate G(s) signaling in any tissue, but would be particularly useful for analyzing downstream events that mediate body weight regulation in mice. Our study also demonstrates the use of human genetic variation for protein engineering.  相似文献   

5.
The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and β(2)-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT(4)Rs) (including a 5-HT(4)-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT(4), in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric G(s) protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT(4)R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms.  相似文献   

6.
To control G protein signaling in vivo, we have modified G protein-coupled receptors to respond exclusively to synthetic small molecule agonists and not to their natural agonist(s). These engineered receptors are designated RASSLs (receptor activated solely by a synthetic ligand). A prototype RASSL (Ro1) based on the Gi-coupled K opioid receptor was expressed in transgenic mice under the control of the tetracycline transactivator (tet) system. Activation of Ro1 expressed in the heart decreased heart rate by up to 80%, an expected effect of increased Gi signaling. Maximal heart rate changes occurred in less than 1 min, demonstrating the speed of this inducible signaling system. This Ro1-mediated slowing of heart rate was also subject to desensitization, which lasted more than 24 h. Both the initial effect on heart rate and the desensitization occurred, even though Ro1 is derived from a human opioid receptor not normally involved in heart rate control. In addition, the tet system was used to induce Ro1 expression in hepatocytes and salivary gland, where Gi signaling is known to control physiologic events such as proliferation and secretion. These studies demonstrate that a RASSL can be inducibly expressed in several mouse tissues and used in vivo to activate G protein signaling in a controllable fashion.  相似文献   

7.
By analogy to other axonal proteins, transcytotic delivery following spontaneous endocytosis from the somatodendritic membrane is expected to be essential for polarized distribution of axonal G-protein coupled receptors (GPCRs). However, possible contribution from constitutive activation, which may also result in constitutive GPCR endocytosis, is poorly known. Using two closely related but differentially distributed serotonin receptors, here we demonstrate higher constitutive activation and spontaneous endocytosis for the axonal 5-HT(1B) R, as compared to the somatodendritic 5-HT(1A) R, both in non-neuronal cells and neurons. Activation-dependent constitutive endocytosis is crucial for axonal targeting, because inverse-agonist treatment, which prevents constitutive activation, leads to atypical accumulation of newly synthesized 5-HT(1B) Rs on the somatodendritic plasma membrane. Using receptor chimeras composed of different domains from 5-HT(1A) R and 5-HT(1B) R, we show that the complete third intracellular loop of 5-HT(1B) R is necessary and sufficient for constitutive activation and efficient axonal targeting, both sensitive to inverse-agonist treatment. These results suggest that activation and targeting of 5-HT(1B) Rs are intimately interconnected in neurons.  相似文献   

8.
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.  相似文献   

9.
G-protein-coupled receptors (GPCRs) activate heterotrimeric G-proteins (G(i)-, G(s)-, G(q)-, or G(12)-like) to generate specific intracellular responses, depending on the receptor/G-protein coupling. The aim was to enable a majority of GPCRs to generate a predetermined output by signaling through a single G-protein-supported pathway. The authors focused on calcium responses as the output, then engineered Galpha(q) to promote promiscuous receptor interactions. Starting with a human Galpha(q) containing 5 Galpha(z) residues in the C-terminal receptor recognition domain (hGalpha(q/z5)), they evaluated agonist-stimulated calcium responses for 33 diverse GPCRs (G(i)-, G(s)-, and G(q)-coupled) and found 20 of 33 responders. In parallel, they tested Caenorhabditis elegans Galpha(q) containing 5 or 9 C-terminal Galpha(z) residues (cGalpha(q/z5), cGalpha(q/z9)). Signal detection was enhanced with cGalpha(q/z5) and cGalpha(q/z9) (yielding 25/33 and 26/33 responders, respectively). In a separate study of Galpha(s)-coupled receptors, the authors compared hGalpha(q/s5) versus hGalpha(q/s9), cGalpha(q/s9), andcGalphaq/s21 and observed optimal function with cGalpha(q/s9). Cotransfection of an engineered Galpha(q) "cocktail" (cGalpha(q/z5) plus cGalpha(q/s9)) provided a powerful and efficient screening platform. When the chimeras included N-terminal myristoylation sites (to promote membrane localization), calcium responses were sustained or improved, depending on the receptor. This approach toward a "universal functional assay" is particularly useful for orphan GPCRs whose signaling pathways are unknown.  相似文献   

10.
Co-expression of guanine nucleotide-binding regulatory (G) protein-coupled receptors (GPCRs), such as the G(i/o)-coupled human 5-hydroxytryptamine receptor 1B (5-HT(1B)R), with the G(q/11)-coupled human histamine 1 receptor (H1R) results in an overall increase in agonist-independent signaling, which can be augmented by 5-HT(1B)R agonists and inhibited by a selective inverse 5-HT(1B)R agonist. Interestingly, inverse H1R agonists inhibit constitutively H1R-mediated as well as 5-HT(1B)R agonist-induced signaling in cells co-expressing both receptors. This phenomenon is not solely characteristic of 5-HT(1B)R; it is also evident with muscarinic M2 and adenosine A1 receptors and is mimicked by mastoparan-7, an activator of G(i/o) proteins, or by over-expression of Gbetagamma subunits. Likewise, expression of the G(q/11)-coupled human cytomegalovirus (HCMV)-encoded chemokine receptor US28 unmasks a functional coupling of G(i/o)-coupled CCR1 receptors that is mediated via the constitutive activity of receptor US28. Consequently, constitutively active G(q/11)-coupled receptors, such as the H1R and HCMV-encoded chemokine receptor US28, constitute a regulatory switch for signal transduction by G(i/o)-coupled receptors, which may have profound implications in understanding the role of both constitutive GPCR activity and GPCR cross-talk in physiology as well as in the observed pathophysiology upon HCMV infection.  相似文献   

11.
Although only 16 genes have been identified in mammals, several Galpha subunits can be simultaneously activated by G protein-coupled receptors (GPCRs) to modulate their complicated functions. Current GPCR assays are limited in the evaluation of selective Galpha activation, thus not allowing a comprehensive pathway screening. Because adenylyl cyclases are directly activated by G(s)alpha and the carboxyl termini of the various Galpha proteins determine their receptor coupling specificity, we proposed a set of chimeric G(s)alpha where the COOH-terminal five amino acids are replaced by those of other Galpha proteins and used these to dissect the potential Galpha linked to a given GPCR. Unlike G(q)alpha, G(12)alpha, and G(i)alpha outputs, compounding the signals from several Galpha members, the chimeric G(s)alpha proteins provide a superior molecular approach that reflects the previously uncharacterized pathways of GPCRs under the same cAMP platform. This is, to our knowledge, the first time allowing verification of the whole spectrum of Galpha coupling preference of adenosine A1 receptor, reported to couple to multiple G proteins and modulate many physiological processes. Furthermore, we were able to distinguish the uncharacterized pathways between the two neuromedin U receptors (NMURs), which distribute differently but are stimulated by a common agonist. In contrast to the G(q) signals mainly conducted by NMUR1, NMUR2 routed preferentially to the G(i) pathways. Dissecting the potential Galpha coupling to these GPCRs will promote an understanding of their physiological roles and benefit the pharmaceutical development of agonists/antagonists by exploiting the selective affinity toward a certain Galpha subclass.  相似文献   

12.
Long-term potentiation (LTP) and long-term depression (LTD) are the major forms of functional synaptic plasticity observed at CA1 synapses of the hippocampus. The balance between LTP and LTD or “metaplasticity” is controlled by G-protein coupled receptors (GPCRs) whose signal pathways target the N-methyl-D-asparate (NMDA) subtype of excitatory glutamate receptor. We discuss the protein kinase signal cascades stimulated by Gαq and Gαs coupled GPCRs and describe how control of NMDAR activity shifts the threshold for the induction of LTP.  相似文献   

13.
Two alternatively spliced variants of an orphan Caenorhabditis elegans G-protein-coupled receptors (GPCRs; Y58G8A.4a and Y58G8A.4b) were cloned and functionally expressed in Chinese hamster ovary (CHO) cells. The Y58G8A.4a and Y58G8A.4b proteins (397 and 433 amino acid residues, respectively) differ both in amino acid sequence and length of the C-terminal tail of the receptor. A calcium mobilization assay was used as a read-out for receptor function. Both receptors were activated, with nanomolar potencies, by putative peptides encoded by the flp-18 precursor gene, leading to their designation as FLP-18R1a (Y58G8A.4a) and FLP-18R1b (Y58G8A.4b). Three Ascaris suum neuropeptides AF3, AF4, and AF20 all sharing the same FLP-18 C-terminal signature, -PGVLRF-NH(2), were also potent agonists. In contrast to other previously reported C. elegans GPCRs expressed in mammalian cells, both FLP-18R1 variants were fully functional at 37 degrees C. However, a 37 to 28 degrees C temperature shift improved their activity, an effect that was more pronounced for FLP-18R1a. Despite differences in the C-terminus, the region implicated in distinct G-protein recognition for many other GPCRs, the same signaling pathways were observed for both Y58G8A.4 isoforms expressed in CHO cells. Gq protein coupling seems to be the main but not the exclusive signaling pathway, because pretreatment of cells with U-73122, a phospholipase inhibitor, attenuated but did not completely abolish the Ca(2+) signal. A weak Gs-mediated receptor activation was also detected as reflected in an agonist-triggered concentration-dependent cAMP increase. The matching of the FLP-18 peptides with their receptor(s) allows for the evaluation of the pharmacology of this system in the worm in vivo.  相似文献   

14.
In the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT1A receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells. 5-HT also transactivates PDGFβ receptors in primary cortical neurons. This transactivation pathway is pertussis-toxin sensitive and Src tyrosine kinase-dependent. This pathway is also dependent on phospholipase C activity and intracellular calcium signaling. Several studies involving PDGFβ receptor transactivation by GPCRs have also demonstrated a PDGFβ receptor-dependent increase in the phosphorylation of ERK1/2. Yet in SH-SY5Y cells, 5-HT treatment causes a PDGFβ receptor-independent increase in ERK1/2 phosphorylation. This crosstalk between 5-HT and PDGFβ receptors identifies a potentially important signaling link between the serotonergic system and growth factor signaling in neurons.  相似文献   

15.
Family 3 G-protein-coupled receptors (GPCRs), which includes metabotropic glutamate receptors (mGluRs), sweet and "umami" taste receptors (T1Rs), and the extracellular calcium-sensing receptor (CaR), represent a distinct group among the superfamily of GPCRs characterized by large amino-terminal extracellular ligand-binding domains (ECD) with homology to bacterial periplasmic amino acid-binding proteins that are responsible for signal detection and receptor activation through as yet unresolved mechanism(s) via the seven-transmembrane helical domain (7TMD) common to all GPCRs. To address the mechanism(s) by which ligand-induced conformational changes are conveyed from the ECD to the 7TMD for G-protein activation, we altered the length and composition of a 14-amino acid linker segment common to all family 3 GPCRs except GABA(B) receptor, in the CaR by insertion, deletion, and site-directed mutagenesis of specific highly conserved residues. Small alterations in the length and composition of the linker impaired cell surface expression and abrogated signaling of the chimeric receptors. The exchange of nine amino acids within the linker of CaR with the homologous sequence of mGluR1, however, preserved receptor function. Ala substitution for the four highly conserved residues within this amino acid sequence identified a Leu at position 606 of the CaR critical for cell surface expression and signaling. Substitution of Leu(606) for Ala resulted in impaired cell surface expression. However, Ile and Val substitutions displayed strong activating phenotypes. Disruption of the linker by insertion of nine amino acids of a random-coiled structure uncoupled the ECD from regulating the 7TMD. These data are consistent with a model of receptor activation in which the peptide linker, and particularly Leu(606), provides a critical interaction for the CaR signal transmission, a finding likely to be relevant for all family 3 GPCRs containing this conserved motif.  相似文献   

16.
Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we took advantage of one disease-associated mutation (R164Q) located in the second intracellular (IL2) loop of PKR2, to investigate the role of IL2 loop in the cell signaling, G-protein binding and receptor trafficking. R164Q mutant PKR2 showed normal cell surface expression and ligand binding capacity. However, the PKR2 signaling was abolished by R164Q mutation. We demonstrated that R164Q mutation disrupted the interaction of IL2 loop to the Gα(q), Gα(i), and Gα(16)-proteins. A positive-charged amino acid at this position is required for proper function, and the signaling efficacy and potency depend on the net amount of positive charges. We also demonstrated that the interactive partner of Arg-164 may localize in the C-terminal five residues of Gα(q)-protein. A series of mutation analysis indicated that the basic amino acids at the C terminus of IL2 loop may function cooperatively in GPCRs. Furthermore, R164Q mutation also results in minimal ligand-induced endocytosis of PKR2. As many GPCRs share structural homology in the C terminus of IL2 loop, our findings may have general application in understanding structure and function of GPCRs.  相似文献   

17.
18.
After the discovery of molecules modulating G protein-coupled receptors (GPCRs) that are able to selectively affect one signaling pathway over others for a specific GPCR, thereby "biasing" the signaling, it has become obvious that the original model of GPCRs existing in either an "on" or "off" conformation is too simple. The current explanation for this biased agonism is that GPCRs can adopt multiple active conformations stabilized by different molecules, and that each conformation affects intracellular signaling in a different way. In the present study we sought to investigate biased agonism of the calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated through recruitment of β-arrestins. Next, by measuring activity of all three signaling pathways we found that barium, spermine, neomycin, and tobramycin act as biased agonist in terms of efficacy and/or potency. Finally, polyamines and aminoglycosides in general were biased in their potencies toward ERK1/2 signaling. In conclusion, the results of this study indicate that several active conformations of CaSR, stabilized by different molecules, exist, which affect intracellular signaling distinctly.  相似文献   

19.
Protein-protein interactions define specificity in signal transduction and these interactions are central to transmembrane signaling by G-protein-coupled receptors (GPCRs). It is not quite clear, however, whether GPCRs and the regulatory trimeric G-proteins behave as freely and independently diffusible molecules in the plasma membrane or whether they form some preassociated complexes. Here we used clear-native polyacrylamide gel electrophoresis (CN-PAGE) to investigate the presumed coupling between thyrotropin-releasing hormone (TRH) receptor and its cognate G(q/11) protein in HEK293 cells expressing high levels of these proteins. Under different solubilization conditions, the TRH receptor (TRH-R) was identified to form a putative pentameric complex composed of TRH-R homodimer and G(q/11) protein. The presumed association of TRH-R with G(q/11)α or Gβ proteins in plasma membranes was verified by RNAi experiments. After 10- or 30-min hormone treatment, TRH-R signaling complexes gradually dissociated with a concomitant release of receptor homodimers. These observations support the model in which GPCRs can be coupled to trimeric G-proteins in preassembled signaling complexes, which might be dynamically regulated upon receptor activation. The precoupling of receptors with their cognate G-proteins can contribute to faster G-protein activation and subsequent signal transfer into the cell interior.  相似文献   

20.
G protein-coupled receptors (GPCRs) represent the largest family of proteins involved in signal transduction. Here we present a bioluminescence resonance energy transfer (BRET) assay that directly monitors in real time the early interactions between human GPCRs and their cognate G-protein subunits in living human cells. In addition to detecting basal precoupling of the receptors to Galpha-, Gbeta- and Ggamma-subunits, BRET measured very rapid ligand-induced increases in the interaction between receptor and Galphabetagamma-complexes (t(1/2) approximately 300 ms) followed by a slower (several minutes) decrease, reflecting receptor desensitization. The agonist-promoted increase in GPCR-Gbetagamma interaction was highly dependent on the identity of the Galpha-subunit present in the complex. Therefore, this G protein-activity biosensor provides a novel tool to directly probe the dynamics and selectivity of receptor-mediated, G-protein activation-deactivation cycles that could be advantageously used to identify ligands for orphan GPCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号