首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nudiviruses represent a diverse group of arthropod specific, rod-shaped and dsDNA viruses. Due to similarities in pathology and morphology to members of the family Baculoviridae, they have been previously classified as the so-called “non-occluded” baculoviruses. However, presently they are taxonomically orphaned and are not assigned to any virus family because of the lack of genetic relatedness to Baculoviridae,. Here, we report on recent progress in the genomic analysis of Heliothis zea nudivirus 1 (HzNV-1), Oryctes rhinoceros nudivirus (OrNV), Gryllus bimaculatus nudivirus (GbNV) and Heliotis zea nudivirus 2 (HzNV-2). Gene content comparison and phylogenetic analyses indicated that the viruses share 15 core genes with baculoviruses and form a monophyletic sister group to them. Consequences of the genetic relationship are discussed for the classification of nudiviruses.  相似文献   

2.
3.
4.
The Baculoviridae are a large family of enveloped DNA viruses exclusively pathogenic to arthropods. Baculoviruses have been extensively used in insect cell-based recombinant protein expression system and as biological pesticides. They have been deomostrated to be safe to mammals, birds and fish. Recently, baculoviruses has been shown to transduce different mammalian cells in spite of the fact that they cannot replicate in mammalian cells (11, 73, 76). This has resulted in the development of baculoviruses as mammalian expression systems and even as vestors for gene therapy. Foundation item: National Nature Science Foundations of China (30325002, 30470075).  相似文献   

5.
Baculoviruses, members of the family Baculoviridae, are large, enveloped viruses that contain a double‐stranded circular DNA genome of 80–180 kbp, encoding 90–180 putative proteins. These viruses are exclusively pathogenic for arthropods, particularly insects, and have been developed, or are being developed, as environmentally sound pesticides and eukaryotic vectors for foreign protein expression, surface display, gene delivery for gene therapy, vaccine production and drug screening. The baculoviruses contain a set of approximately 30 core genes that are conserved among all baculovirus genomes sequenced to date. Individual baculoviruses also contain a number of lineage‐ or species‐specific genes that have greatly impacted the diversification and evolution of baculoviruses. In this review, we first describe the general properties and biology of baculoviruses and then focus on the baculovirus genes and mechanisms involved in the replication, spread and survival of baculoviruses within the context of their diversity, evolution and insect manipulation.  相似文献   

6.
The family Baculoviridae is a large group of insect viruses containing circular double-stranded DNA genomes of 80 to 180 kbp, which have broad biotechnological applications. A key feature to understand and manipulate them is the recognition of orthology. However, the differences in gene contents and evolutionary distances among the known members of this family make it difficult to assign sequence orthology. In this study, the genome sequences of 58 baculoviruses were analyzed, with the aim to detect previously undescribed core genes because of their remote homology. A routine based on Multi PSI-Blast/tBlastN and Multi HaMStR allowed us to detect 31 of 33 accepted core genes and 4 orthologous sequences in the Baculoviridae which were not described previously. Our results show that the ac53, ac78, ac101 (p40), and ac103 (p48) genes have orthologs in all genomes and should be considered core genes. Accordingly, there are 37 orthologous genes in the family Baculoviridae.  相似文献   

7.
Genetically engineered baculoviruses, relative to their wild-type progenitors, have successfully improved the time-to-kill of these arthropod-specific biopesticides. Beneficial arthropods that prey on targeted pest insects are likely the first nontarget organisms to be adversely affected by the applications of such biopesticides. The goals of this project were to assess potential risks of the recombinant baculoviruses on Solenopsis invicta, Geocoris punctipes, and Hippodamia convergens, all of which are common predators of heliothines in Texas cotton. Four recombinant Autographa californica nuclear polyhedrosis viruses (AcNPV), one Helicoverpa zea nuclear polyhedrosis virus (HzNPV), and two corresponding wild-type NPVs were used in this risk assessment study. Risks associated with these baculoviruses were determined by possible shifts in predator life history traits (rate of food consumption, travel speed, fecundity, and survival) when fed prey infected with recombinant viruses compared to prey infected with wild-type viruses or to healthy prey. We also tested for possible transmission of these viruses by predators using the polymerase chain reaction (PCR). No significant shifts in life history characteristics were detected in predators fed Heliothis virescens larvae infected with any of the seven viruses. Viral DNA was discovered using PCR in 2.3% of fire ant workers, but not from any of the queens or eggs. In G. punctipes, 13.4% of adults and 0.5% of eggs scored positive for viruses. Twelve percent of H. convergens adults were found PCR positive. Residency in all three predators tested provides a pathway which could increase the persistence of recombinant viral particles in the environment and thus may produce an indeterminable amount of risk associated with their inadvertent movement.  相似文献   

8.
Ascoviruses, iridoviruses, asfarviruses and poxviruses are all cytoplasmic DNA viruses. The evolutionary origins of cytoplasmic DNA viruses have never been fully addressed. Morphological, genetic and molecular data were used to test if all four cytoplasmic virus families (Ascoviridae, Iridoviridae, Asfarviridae, and Poxvirirdae) evolved from nuclear replicating baculoviruses and how the four virus groups are related. Molecular phylogenetic analyses using DNA polymerase predicted that cytoplasmic DNA viruses might have evolved from nuclear replicating baculoviruses, and that poxviruses and asfarviruses share a common ancestor with iridoviruses. These three cytoplasmic viruses again shared a common ancestor with ascoviruses. Morphological and genetic data predicted the same evolutionary trend as molecular data predicted. A genome sequence comparison showed that ascoviruses have more baculovirus protein homologues than do iridoviruses, which suggested that ascoviruses have evolved from baculoviruses and iridoviruses evolved from ascoviruses. Poxviruses showed genetic and morphological similarity to other cytoplamic viruses, such as ascoviruses, suggesting it has undergone reticulate evolution via hybridization, recombination and lateral gene transfer with other viruses. Within the ascovirus family, we tested if molecular phylogenetic analyses agree with biological inference; that is, ascovirus had an evolutionary trend of increasing genome size, expanding host range and widening tissue tropism for these viruses. Both molecular and biological data predicted this evolutionary trend. The phylogenetic relationship among the four species of ascovirus was predicted to be that TnAV-2 and HvAV-3 shared a common ancestor with SfAV-1 and the three virus species again shared a common ancestor with DpAV-4.   相似文献   

9.

Background

Pseudoplusia includens single nucleopolyhedrovirus (PsinSNPV-IE) is a baculovirus recently identified in our laboratory, with high pathogenicity to the soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae) (Walker, 1858). In Brazil, the C. includens caterpillar is an emerging pest and has caused significant losses in soybean and cotton crops. The PsinSNPV genome was determined and the phylogeny of the p26 gene within the family Baculoviridae was investigated.

Results

The complete genome of PsinSNPV was sequenced (Roche 454 GS FLX – Titanium platform), annotated and compared with other Alphabaculoviruses, displaying a genome apparently different from other baculoviruses so far sequenced. The circular double-stranded DNA genome is 139,132 bp in length, with a GC content of 39.3 % and contains 141 open reading frames (ORFs). PsinSNPV possesses the 37 conserved baculovirus core genes, 102 genes found in other baculoviruses and 2 unique ORFs. Two baculovirus repeat ORFs (bro) homologs, bro-a (Psin33) and bro-b (Psin69), were identified and compared with Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) and Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) bro genes and showed high similarity, suggesting that these genes may be derived from an ancestor common to these viruses. The homologous repeats (hrs) are absent from the PsinSNPV genome, which is also the case in ChchNPV and TnSNPV. Two p26 gene homologs (p26a and p26b) were found in the PsinSNPV genome. P26 is thought to be required for optimal virion occlusion in the occlusion bodies (OBs), but its function is not well characterized. The P26 phylogenetic tree suggests that this gene was obtained from three independent acquisition events within the Baculoviridae family. The presence of a signal peptide only in the PsinSNPV p26a/ORF-20 homolog indicates distinct function between the two P26 proteins.

Conclusions

PsinSNPV has a genomic sequence apparently different from other baculoviruses sequenced so far. The complete genome sequence of PsinSNPV will provide a valuable resource, contributing to studies on its molecular biology and functional genomics, and will promote the development of this virus as an effective bioinsecticide.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1323-9) contains supplementary material, which is available to authorized users.  相似文献   

10.
Immunological comparisons were made of baculovirus structural proteins by using a modification of the radioimmunological techniques described by Renart et al. (Proc. Natl. Acad. Sci. U.S.A. 76: 3116-3120, 1979) and Towbin et al. (Proc. Natl. Acad. Sci. U.S.A. 76: 4350-4354, 1979). Viral proteins were electrophoresed in polyacrylamide gels, transferred to nitrocellulose, and incubated with viral antisera, and the antibodies were detected with 125I-labeled Staphylococcus aureus protein A. Antisera were prepared to purified and intact virions from five baculoviruses: Autographa californica, Porthetria dispar, Trichoplusia ni, and Heliothis zea nuclear polyhedrosis viruses (NPVs) and T. ni granulosis virus (GV). These antisera were tested against the virion structural polypeptides of 17 different species of baculoviruses. Specific multiple-nucleocapsid NPV (MNPV), single-nucleocapsid NPV (SNPV), and GV virion polypeptides were shown to have similar antigenic determinants and thus be immunologically related. The molecular weights of the virion polypeptides with cross-reacting antigenic determinants were identified. Antisera prepared to purified A. californica and H. zea MNPV polyhedrin (the occlusion body protein from NPVs) recognized antigenic determinants on all the polyhedrins and granulins (occlusion body protein from GVs) that were tested. No immunological relationship was detected between A. californica MNPV polyhedrin and any of the A. californica MNPV virion structural polypeptides present on either the virus isolated from occlusion bodies or A. californica MNPV extracellular virus from infected-cell cultures.  相似文献   

11.
Jatropha curcas (jatropha) is a potential biodiesel crop. A major limitation in production is that jatropha remains wild with low genetic variation. Related species/genera in the Euphorbiaceae can potentially be used for its genetic improvement. In this study, we employed inter-simple sequence repeats (ISSRs) to assess genetic variation among 30 accessions of jatropha, two accessions of bellyache bush (Jatropha gossypifolia), two accessions of spicy jatropha (Jatropha integerrima), two accessions of bottleplant shrub (Jatropha podagrica), and three accessions of castor bean hybrids. Genetic relationships were evaluated using 27 of 86 ISSR markers, yielding 307 polymorphic bands with polymorphism contents ranging from 0.76 to 0.95 for IMPN 1 and UBC 807 markers, respectively. Dice’s genetic similarity coefficient ranged from 0.39 to 0.99, which clearly separated the plant samples into seven groups at the coefficient of 0.48. The first group comprised J. curcas from Mexico, the second group comprised J. curcas from China and Vietnam, the third group comprised J. curcas from Thailand, the fourth group was J. integerrima, the fifth group was J. gossypifolia, the sixth group was J. podagrica, and the last and most distinct group was Ricinus communis. Analysis of molecular variance revealed that 63% of the variability was attributable to variation among groups, while 37% was due to variation within groups. Based on Nei’s genetic distance, the population from G2 (J. curcas from China) and G4 (J. curcas from Vietnam) had the least ISSR variability (0.0668), whereas G8 (R. communis) and Jatropha spp. displayed the highest distance (0.6005–0.7211).  相似文献   

12.
Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F‐statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.  相似文献   

13.
14.
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response.  相似文献   

15.
To assess the diversity and relationships of baculoviruses found in insects of the heliothine pest complex, a PCR-based method was used to classify 90 samples of nucleopolyhedrovirus (NPV; Baculoviridae: Alphabaculovirus) obtained worldwide from larvae of Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Partial nucleotide sequencing and phylogenetic analysis of three highly conserved genes (lef-8, lef-9, and polh) indicated that 67 of these samples contained isolates of the H. zea-H. armigera single nucleopolyhedrovirus (Hz/HaSNPV) species group. Eighteen of the samples contained isolates of a multiple NPV from H. armigera, HearMNPV, and five of the samples contained isolates of Autographa californica MNPV (AcMNPV). Sequencing and analysis of an additional seven loci (orf5/orf5b, hr3-orf62, orf26, orf79, orf124/orf117a, orf42, and a part of the region between hr2 and hr3) in the Hz/HearSNPV isolates further classified these viruses into two groups of HearSNPV variants mostly from India and China and a third group of HzSNPV variants. Some of the samples contained isolates of more than one virus. In bioassays of a selection of isolates against H. zea, the commercially available Gemstar® isolate of HzSNPV killed larvae faster than most other Hz/HaSNPV and HearMNPV isolates. Gemstar® and two HearMNPV isolates exhibited significantly higher LC50s than the Hz/HearSNPV isolates tested. This study expands significantly on what we know about the variation of heliothine NPV populations, provides novel information on the distinct groups in which these NPVs occur, and contributes to the knowledge required for improvement of heliothine baculoviruses as biological control agents.  相似文献   

16.
Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut [Cocos nucifera L. (Arecaceae)] has very few chewing‐type leaf feeding insect pests and was tested for feeding suitability against two generalist leaf feeding caterpillar species, corn earworm, Helicoverpa zea (Boddie), and fall armyworm, Spodoptera frugiperda (J.E. Smith) (both Lepidoptera: Noctuidae). Feeding on leaf tissues from the most recently expanded leaves of a coconut variety caused significant mortality and reduced growth rates (as indicated by survivor weights) of S. frugiperda and H. zea compared to when they fed on leaves from a typical host, maize [Zea mays L. (Poaceae)], or the standard artificial diet. Proteins or other polymers did not appear to be responsible for the bioactivity noted against the caterpillars. Components responsible for activity were acetone extractable and separable by thin layer chromatography. Extracts from multiple areas of the thin layer chromatography (TLC) plates caused significant reductions in growth rates of S. frugiperda. The most bioactive TLC‐separated component, identified as pheophytin a, caused oxidative browning of test diets, suggesting that cytotoxicity of reactive oxygen species is a likely mode of action against H. zea and S. frugiperda.  相似文献   

17.
Recombinant baculoviruses have been genetically engineered to reduce the time to kill infected pests, thus reducing crop damage. In this study, wild-type viruses and recombinant viruses expressing a scorpion toxin were applied to cotton in response to larval infestations of Helicoverpa zea and Heliothis virescens in 1997 and 1998. A chemical standard and an untreated control acted as comparison treatments. The goals of this field study were to (1) assess the efficacy of recombinant baculoviruses in protecting cotton from larval feeding damage; (2) assess the impact of recombinant virus introductions on predator densities and diversity; and (3) determine if cotton predators acquire baculovirus by consuming infected heliothines. When applications were timed at larval emergence, certain recombinant virus treatments protected cotton from damage better than wild-type virus treatments and as well as the chemical standard. Differences in efficacy between recombinant and wild-type baculoviruses were not apparent if treatments were applied 3 to 4 days after peak larval emergence. Predator densities and diversity were similar among recombinant and wild-type baculovirus treatments, whereas plots treated with the chemical standard had consistently smaller predator populations. From polymerase chain reaction analyses of predators in 1997 and 1998, 1.7 and 0.2%, respectively, of predators had consumed a virus-infected heliothine. Nine of the 26 predators carrying viral DNA were positive for recombinant virus. Additionally, 13 of the 26 predators were found to disperse 13.5 to 105 m 2 to 5 days after initial virus applications. Five of these dispersing predators (0.2% of all predators evaluated) carried recombinant viral DNA. These results suggest that the potential for the inadvertent spread of recombinant viral DNA via dispersing predators is low.  相似文献   

18.
Griseofulvin is a fungal metabolite that can be considered a mycotoxin but is used pharmaceutically to treat topical fungal infections. It was found to be toxic to both the corn earworm.Helicoverpa zea Boddie, and the fall armyworm,Spodoptera frugiperda (J. E. Smith), at 250 ppm in diets. Its toxicity was enhanced by exposure to ultraviolet light, suggesting it can be photoactivated. Its toxicity was also enhanced by coincorporated δ-amino levulinic acid, suggesting it interferes with porphyrin synthesis in these insects. Differences in toxicity and rates of metabolism caused by coincorporated piperonyl butoxide suggested unspecific monooxygenases were relatively more important in griseofulvin activation inH. zea and detoxification inS. frugiperda.  相似文献   

19.
Summary A phylogenetic tree for occluded baculoviruses was constructed based on the N-terminal amino acid sequence of occlusion body proteins from six baculoviruses including three lepidopteran nuclear polyhedrosis viruses (NPVs), [two unicapsid (Bombyx mori andOrgyia pseudotsugata) and one multicapsid (Orgyia pseudotsugata)]; one granulosis virus (Pieris brassicae); and NPVs from a hymenopteran (Neodiprion sertifer) and a dipteran (Tipula paludosa). Amino acid sequence data for theB. mori NPV were from a report by Sere-bryani et al. (1977) and that for theO. pseudotsugata NPVs were reported previously by us (Rohrmann et al. 1979). The other N-terminal amino acid sequences are presented in this paper. The phylogenetic relationships determined based on the molecular evolution of polyhedrin were also investigated by antigenic comparisons of the proteins using a solid phase radioimmune assay. The results indicate that the lepidopteran NPVs are the most closely related of the above group of viruses and are related to these viruses in the following order:N. sertifer NPV,P. brassicae granulosis virus, andT. paludosa NPV. These data, in conjunction withBaculovirus distribution and evidence concerning insect phylogeny, suggest that theBaculovirus have an ancient association with insects and may have evolved along with them.  相似文献   

20.
Abstract A 6.12 kb Xbal‐H fragment of the Helicoverpa armigem single nucleopolyhedrovirus (HaSNPV) gemone was cloned and the complete sequence of this fragment was sequenced by random sequencing method. Sequence comparison and analysis revealed an ORF13 which was homologous to ie‐1 of Auiographa California nucleopolyhedrovirus (AcMNPV). The homologous encoding gene is ie‐1. The total length of the encoding region of HaSNPV gene was 1986 bp and was predicted to encode 661 amino acid protein(IE‐1) with molecular weight of 76.5 kD. The alingment of putative HaSNPV IE‐1 amino acid sequence with those of other 9 reported baculoviruses IE‐Is showed that the HaSNPV IE‐1 was most closely related to Helicoverpa zea nucleopolyhedrovirus (HzNPV) IE‐1, with 97% amino acid identidy. But it showed a low degree of sequence similarity to those of AcMNPV, Bombyx mori nucleopolyhedrovirus (BmNPV), Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV), Lymantria dispar nucleopolyhedrovirus (LdMNPV), Orgyia pseudotsugata nucleopolyhedrovirus (OpMNPV), Spodoptera exigua nucleopolyhedrovirus (SeMNPV), Plutella xylostella granulovirus(PxGV) and Xestia c‐nigrum granulovirus (XcGV), with 23%, 23%, 23%, 25%, 23%, 14%, 27% and 7% amino acid identity, respectively. A phylogenetic tree of ten baculoviruses IE‐1 was also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号