首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular imprinting and solid phase extraction of flavonoid compounds   总被引:4,自引:0,他引:4  
Molecularly imprinted polymers (MIPs) for quercetin have been successfully prepared by a thermal polymerization method using 4-vinylpyridine (4-VP) and ethylene glycol dimethacrylate (EDMA) as functional monomer and cross-linker, respectively. The obtained molecularly imprinted polymers were evaluated by HPLC using organic eluents, with respect to their selective recognition properties for quercetin and related compounds of the flavonoid class. Two equivalent control polymers, a blank polymer and a polymer imprinted with a structural analogous template, were synthesized, in order to confirm the obtained results. Furthermore, preliminary experiments confirm the applicability of the prepared MIPs for solid phase extraction (SPE), as rapid and facile clean-up of wine samples for HPLC analysis is an envisaged field of application. The successful preparation of molecularly imprinted polymers for flavones provides an innovative opportunity for the development of advanced separation materials, with applications in the field of wine and fermentation analysis.  相似文献   

2.
Molecularly imprinted polymers (MIPs) against fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c β-chains, were prepared by cross-linking of β-d-Fru-Val-O-bis(4-vinylphenylboronate) with an excess of ethylene glycol dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). Control MIPs were prepared in analogy by cross-linking the corresponding vinylphenylboronate esters of fructose and pinacol. After template extraction batch rebinding studies were performed using different pH values and buffer compositions. The Fru-Val imprinted TRIM cross-linked polymer binds about 1.4 times more Fru-Val than the fructose imprinted polymer and 2.7 times more Fru-Val than pinacol imprinted polymer. The highest imprinting effect was obtained in 100 mM sodium carbonate/10% methanol (pH 11.4). The TRIM cross-linked Fru-Val imprinted polymer showed a better specificity than the EDMA cross-linked polymer. The binding of valine was very low. Thermo gravimetric analysis indicated that the generated Fru-Val imprinted polymer has high thermo stability. No change in binding was observed after incubation of the polymers in buffer at 80 °C for 36 h. Since the functional group of the polymers (phenyl boronic acid) targets the sugar part of Fru-Val the imprint technique used should also be applicable for the development of MIPs against other glycated amino acids and peptides.  相似文献   

3.
The role of polymer (poly(vinylamine)) size (238-11000 units) on silicic acid condensation to yield soluble nanoparticles or composite precipitates has been explored by a combination of light scattering (static and dynamic), laser ablation combined with aerosol spectrometry, IR spectroscopy, and electron microscopy. Soluble nanoparticles or composite precipitates are formed according to the degree of polymerization of the organic polymer and pH. Nanoparticles prepared in the presence of the highest molecular weight polymers have core-shell like structures with dense silica cores. Composite particles formed in the presence of polymers with extent of polymerization below 1000 consist of associates of several polymer-silica nanoparticles. The mechanism of stabilization of the "soluble" silica particles in the tens of nanometer size range involves cooperative interactions with the polymer chains which varies according to chain length and pH. An example of the use of such polymer-poly(silicic acid) nanoparticles in the generation of composite polymeric materials is presented. The results obtained have relevance to the biomimetic design of new composite materials based on silica and polymers and to increasing our understanding of how silica may be manipulated (stored) in the biological environment prior to the formation of stable mineralized structures. We suspect that a similar method of storing silicic acid in an active state is used in silicifying organisms, at least in diatom algae.  相似文献   

4.
Molecular imprinting is a technique for the synthesis of polymers capable to bind target molecules selectively. The imprinting of large proteins, such as cell adhesion proteins or cell receptors, opens the way to important and innovative biomedical applications. However, such molecules can incur into important conformational changes during the preparation of the imprinted polymer impairing the specificity of the recognition cavities. The "epitope approach" can overcome this limit by adopting, as template, a short peptide sequence representative of an accessible fragment of a larger protein. The resulting imprinted polymer can recognize both the template and the whole molecule thanks to the specific cavities for the epitope. In this work two molecularly imprinted polymer formulations (a macroporous monolith and nanospheres) were obtained using the protected peptide Z-Thr-Ala-Ala-OMe, as template, and Z-Thr-Ile-Leu-OMe, as analogue for the selectivity evaluation, methacrylic acid, as functional monomer, and trimethylolpropane trimethacrylate and pentaerythritol triacrylate (PETRA), as cross-linkers. Polymers were synthesized by precipitation polymerization and characterized by standard techniques. Polymerization and rebinding solutions were analyzed by high performance liquid chromatography. The highly cross-linked polymers retained about 70% of the total template amount, against (20% for the less cross-linked ones). The extracted template amount and the rebinding capacity decreased with the cross-linking degree, while the selectivity showed the opposite behaviour. The PETRA cross-linked polymers showed the best recognition (MIP 2-, alpha=1.71) and selectivity (MIP 2+, alpha'=5.58) capabilities. The cytotoxicity tests showed normal adhesion and proliferation of fibroblasts cultured in the medium that was put in contact with the imprinted polymers.  相似文献   

5.
A molecular imprinting approach to construct synthetic receptors was examined, wherein a linear pre-polymer bearing functional groups for intermolecular interaction with a given molecule is cross-linked in the presence of the molecule as a template, and subsequent removal of the template from the resultant network-polymer is expected to leave a complementary binding site. Poly(methacrylic acid) (PMAA) derivatized with a vinylbenzyl group as a cross-linkable side chain was utilized as the pre-polymer for the molecular imprinting of a model template, (-)-cinchonidine. Selectivity of the imprinted polymer was evaluated by comparing the retentions of the original template, (-)-cinchonidine and its antipode (+)-cinchonine in chromatographic tests, exhibiting a selectivity factor up to 2.4. By assessment of the imprinted polymers in a batch mode, a dissociation constant at 20 degrees C for (-)-cinchonidine was estimated to be K (d) = 2.35 x 10(-6) M (the number of binding sites: 4.54 x 10(-6) mol/g-dry polymer). The displayed affinity and selectivity appeared comparable to those of an imprinted polymer prepared by a conventional monomer-based protocol, thus showing that the pre-polymer, which can be densely cross-linked, is an alternative imprinter for developing template-selective materials. (-)-Cinchonidine-imprinted polymers were prepared and assessed using the pre-polymers bearing different densities of the vinylbenzyl group and different amounts of the cross-linking agent to examine the appropriate density of the cross-linking side chain that was crucial for developing the high affinity and selectivity of the imprinted polymers.  相似文献   

6.
A one-step precipitation polymerization procedure for the synthesis of molecularly imprinted polymers selective for 17beta-estradiol yielding imprinted micro and nanospheres was developed in this study and compared to templated materials obtained by conventional bulk polymerization. The polymer particles prepared by precipitation polymerization exhibited a regular spherical shape at the micro and nanoscale with a high degree of monodispersity. Moreover, the influence of the polymerization temperature, and the ratio of functional monomer to cross-linker on the size of the obtained particles was investigated. The selectivity of the imprinted micro and nanospheres was evaluated by HPLC analysis and via radioligand binding assays. HPLC separation experiments revealed that the imprinted microspheres provide higher or similar affinity to the template in contrast to imprinted polymers prepared by conventional bulk polymerization or synthesized by multi-step swelling/polymerization methods. The dimensions of the imprinted nanospheres facilitate suspension in solution rendering them ideal for binding assay applications. Results from saturation and displacement assays prove that the imprinted nanospheres exhibit superior specific affinity to the target molecule in contrast to control materials. The binding properties of the nanospheres including binding isotherms and affinity distribution were studied via Freundlich isotherm affinity distribution (FIAD) analysis. Moreover, release experiments show that 70% of rebound 17beta-estradiol was released from the imprinted nanospheres within the first 2 h, while more intimately bound 17beta-estradiol molecules (approx. 16%) were released in the following 42 h. Fitting Brunnauer-Emmet-Teller (BET) multi-point adsorption isotherms to the obtained results indicated that the micro and nanospheres are characterized by a comparatively homogenous and narrow distribution of mesopores in contrast to the corresponding bulk polymers.  相似文献   

7.
Three nitrophenol isomer-imprinted polymers were prepared under the same conditions using 4-vinylpyridine as a functional monomer. Different recognition capacities for template molecules were observed for the three polymers. Another imprinting system with stronger acidity than nitrophenol isomers, 2-hydroxybenzoic acid (salicylic acid) and 4-hydroxybenzoic acid, was imprinted using 4-vinylpyridine or acrylamide as functional monomer respectively. Both 4-hydroxybenzoic acid-imprinted polymers using the two monomers showed recognition ability for the template molecule. However, when acrylamide was chosen as functional monomer, the salicylic acid-imprinted polymer showed very weak recognition for the template molecule, whereas strong recognition ability of the resultant polymer for salicylic acid was observed with 4-vinylpyridine as functional monomer. It seems that the structure and acidity of template molecules is responsible for the difference in recognition, by influencing the formation and strength of interaction between template molecule and functional monomer during the imprinting process. An understanding of the mechanism of molecular imprinting and molecular recognition of MIPs will help to predict the selectivity of MIPs on the basis of template molecule properties.  相似文献   

8.
Imprinted polymers were prepared for nicotinamide and its positional isomers. The influence of porogenic solvent and functional monomer on recognition properties of the polymer was compared. The results indicated that two functional groups, the heterocyclic nitrogen and the amide group, in the nicotinamide or isonicotinamide molecule have a synergistic effect in binding to the polymer. The polymers prepared with nicotinamide and isonicotinamide can be used as HPLC stationary phase for the separation of positional isomers of nicotinamide or isonicotinamide, while the polymer prepared with picolinamide showed no specificity toward the template. The mechanisms for the differences in recognition are discussed. In addition to the retention of polymers to their templates the polymers also displayed excellent retention to nicotinic acid and isonicotinic acid, compounds structurally similar to the template. This dual recognition property of the polymer may be useful in circumstances where the preparation of a polymer for a specific template may be problematic because of poor stability or solubility.  相似文献   

9.
Oxytocin receptor mimetics prepared by molecular imprinting   总被引:1,自引:0,他引:1  
Summary Oxytocin receptor mimetics were prepared by molecular imprinting using Z-oxytocin as the template. Comparative binding studies with reference polymers showed that the imprinted polymers recognized both Z-oxytocin and unprotected oxytocin selectively. The dissociation constants were 47 μM and 102 μM, respectively, and the density of binding sites was 12 μmol/g. The synthetic oxytocin receptors were easily prepared, possessed high mechanical and chemical stability, and were reused without loss of selectivity and capacity after regeneration by extraction. Abbreviations: Bmax, number of binding sites; CLEAR, Cross-Linked Ethoxylate Acrylate Resin; EDMA, ethylene glycol dimethacrylate; FABMS, fast atom bombardment mass spectrometry; Fmoc, 9-fluorenylmethyloxycarbonyl; HPLC, high-performance liquid chromatography; KD, dissociation constant; MAA, methacrylic acid; MIP, molecularly imprinted polymer; SPPS, solid-phase peptide synthesis; TRIM, trimethylolpropane trimethacrylate; Z, benzyloxycarbonyl. Abbreviations used for amino acids and the designation of peptides follow the rules of the IUPAC-IUB Commission of Biochemical Nomenclature [J. Biol. Chem., 247 (1972) 977–983]. All amino acids were of thel-configuration.  相似文献   

10.
A highly selective polymer has been prepared for the selective separation of nucleotides by the surface imprinting polymerization. A dialkyl quaternary ammonium chloride was effective as the functional molecule for recognizing the difference in the structure of nucleotides. Adsorptive behavior of the ionic species of the structural analogues, inosine-5'-monophosphoric acid (IMP) and guanosine-5'-monophosphoric acid (GMP), could be controlled by changing the pH condition. Surface imprinting polymers were prepared under different pH conditions; pH 9.0 and pH 8.5. The IMP-imprinted polymers exhibited higher template effect for IMP than for a structural analogue, GMP. A reference polymer prepared without the imprint molecule neither exhibit any selectivity to IMP nor to GMP. The adsorption behavior was quantitatively evaluated by the binding constants for the IMP-imprinted polymer. The imprinting polymer was found to recognize a small structural difference in nucleotides.  相似文献   

11.
Molecularly imprinted polymers (MIPs) for zearalenone analysis have been synthesized using the template mimics cyclododecyl 2,4-dihydroxybenzoate (CDHB), resorcinol and resorcylic acid. The MIPs are photochemically prepared from 2-(diethylamino)ethyl methacrylate (2-DAEM), 4-vinylpyridine (VIPY), 2-hydroxyethyl methacrylate (HEMA) or 1-allylpiperazine (1-ALPP) as the functional monomers, trimethylolpropane trimethacrylate (TRIM) as cross-linker, azobis(isobutyronitrile) as initiator and acetonitrile as porogen. Non-imprinted polymers have been also synthesized for reference purposes. The textural properties of the novel polymers (BET areas, pore volumes and pore size distributions) have been determined from nitrogen adsorption-desorption isotherms. These parameters have shown to be strongly dependent on the presence of the template and the monomer nature. Scanning electron microscopy and solvent uptake experiments support these findings. Microporosity contributes less than 7% to the total pore volume for all the polymers prepared. Interestingly, a 3.5 nm pore opening is observed for all the polymers and additional pore apertures in the 20-40 nm region for VIPY-, HEMA- and 2-DAEM-based MIPs whereas a much wider opening size distribution has been measured for the 1-ALPP-based MIP. Molecular modeling and, particularly, (1)H NMR experiments demonstrate the strong (2:1) complex formed between 1-ALPP and the diphenolic CDHB (K(11)=4.7 x 10(4)M(-1) and K(12) = 2.6 x 10(2)M(-1) in acetonitrile) that make the corresponding MIP the most suitable for zearalenone recognition in real samples.  相似文献   

12.
This paper aimed at investigating the influence of polymerization temperature on the molecular recognition of molecularly imprinted polymers (MIPs) based on multiple non-covalent interactions. 3-l-Phenylalanylaminopyridine (3-l-PheNHPy) imprinted polymers were prepared using azobisnitriles as either thermal initiators or photoinitiators at various temperatures of 10, 40 and 60 degrees C, respectively. These polymers were subsequently evaluated in the high-performance liquid chromatographic (HPLC) mode for enantioselectivity. An unexpected result shows that polymer prepared at 40 degrees C has the highest enantioselectivity, but not the polymer prepared at lower temperature of 10 degrees C. Further, the effect of elution temperature and sample load on the selectivity of polymers was investigated in detail. In order to get a better understanding of the "exception", the influence of polymerization temperature on the polymerization extent and polymer morphology was studied by FT-IR spectrum test, cross-polarization magic angle spinning (CP-MAS) (13)NMR spectra experiment and pore analysis. Based on these results we attribute this "exception" to that there is a tradeoff between the extent of polymerization and stabilization of the template-functional monomer complexes. And an optimal polymerization temperature can be found for each combination of template and monomer.  相似文献   

13.
Molecularly imprinted polymers (MIPs) using p-hydroxybenzoic acid (p-HB), p-hydroxyphenylacetic acid (p-HPA) and p-hydroxyphenylpropionic acid (p-HPPA) as templates were synthesized. The performance of the templates and their analogues on polymer-based high performance liquid chromatography (HPLC) columns was studied. The imprinting effect of the MIP using p-HB as template is more obvious than that of MIP using either p-HPA or p-HPPA as template, and the mixture of p-HB and p-HPA can be well separated on the MIP using p-HB as template, but not on the blank. Interestingly, the recognition of MIP (p-HB as the template) to p-HB showed a synergistic effect. The retention factor of p-HB is not the sum of those of phenol and benzoic acid. We also found that the imprinting effect decreased when increasing the concentration of acetic acid in mobile phase. The possible reason is that acetic acid molecules occupied the binding sites of the polymer, thereby decreasing the concentration of binding sites. Furthermore, polymers, which showed specificity to 3,4-dihydroxybenzoic acid, can be prepared with p-HB as template. It is thus possible to synthesize a specific polymer for a compound that is either expensive or unstable by using a structurally similar compound as template.  相似文献   

14.
A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms. Moreover, the complexity of the molecular level events underlying template complexation is highlighted by this study, a factor that should be considered in rational molecularly imprinted polymer design, especially with respect to recognition site heterogeneity.  相似文献   

15.
A series of polymers molecularly imprinted with the general anaesthetic propofol were synthesized using both semi- and non-covalent approaches. The polymers were evaluated with respect to template rebinding in both aqueous and organic media. In aqueous media, the observed propofol binding in these polymer systems was largely hydrophobic and non-specific in nature. In non-polar solvents such as hexane, electrostatic (hydrogen bonding) interactions dominate resulting in some selectivity. The implication of these results, in conjunction with those obtained using structures of similar size in other studies, is that propofol, a template possessing limited functionality and size, appears to define the lower limit for template size and degree of functionalization that can be used for the creation of ligand-selective recognition sites in molecularly imprinted polymers. Furthermore, studies with alternative ligands indicate that the steric crowding of a ligand's functionality to the polymer contributes to the extent of polymer-ligand recognition.  相似文献   

16.
Molecular imprinting: at the edge of the third millennium   总被引:19,自引:0,他引:19  
Molecularly imprinted polymers (MIPs) represent a new class of materials that have artificially created receptor structures (1-3). Since their discovery in 1972, MIPs have attracted considerable interest from scientists and engineers involved with the development of chromatographic adsorbents, membranes, sensors and enzyme and receptor mimics.  相似文献   

17.
The preparation of molecularly imprinted polymers (MIP) based on non-covalent interactions has become a widely used technique for creating highly specific sorbent materials predominantly used in separation chemistry. A crucial factor in a successful imprinting protocol is the optimisation of the template/functional monomer interaction in the pre-polymerisation mixture, eventually leading to a maximum of high-affinity binding sites in the resulting polymer matrix. In order to develop more efficient preparation technologies for imprinted polymers, two separate pre-polymerisation complexes were investigated by NMR spectroscopic techniques in order to identify the types of interactions occurring in the pre-polymerisation mixture, and their implications for the subsequently formed imprinted polymer. In particular, hydrophobic effects have been followed by NMR spectroscopy and their contribution to the selectivity of the resulting MIP has been investigated. The 2,4-D imprint system is used as an example to fundamentally study whether observations at the pre-polymerisation stage correlate with properties of the finally prepared MIP, and which parameters govern success of an imprinting protocol.  相似文献   

18.
We present a new concept of synthesis for preparation of molecularly imprinted polymers using a functionalized initiator to replace the traditional functional monomer. Using propranolol as a model template, a carboxyl-functionalized radical initiator was demonstrated to lead to high-selectivity polymer particles prepared in a standard precipitation polymerization system. When a single enantiomer of propranolol was used as template, the imprinted polymer particles exhibited clear chiral selectivity in an equilibrium binding experiment. Unlike the previous molecular imprinting systems where the active free radicals can be distant from the template-functional monomer complex, the method reported in this work makes sure that the actual radical polymerization takes place in the vicinity of the template-associated functional groups. The success of using functional initiator to synthesize molecularly imprinted polymers brings in new possibilities to improve the functional performance of molecularly imprinted synthetic receptors.  相似文献   

19.
Chiral stationary phases (CSPs) prepared by mixing together two different cellulose derivatives, before or after being coated on macroporous silica gel, were developed in order to determine the mutual influence of two different polymers on global chiral recognition capacity. The chromatographic properties of these CSPs were evaluated using a wide range of racemic test solutes. The mixing method does not significantly affect the enantioselectivities. The composite CSPs obtained by cocoating of two different cellulose derivatives on silica generally exhibit chiral recognition capacities intermediate between those of the two individual phases, and thus broadening the application range of a single column. These results indicate that the simultaneous coating of two different cellulose derivatives does not significantly alter the optical resolution power of each chiral material and are discussed in relationship with the supramolecular structure of the polymeric stationary phases. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Two series of crosslinked starch polymers were tested for their ability to adsorb organic pollutants in aqueous solutions. The polymers were prepared by a crosslinking reaction of starch-enriched flour using epichlorohydrin as the crosslinking agent, without and in the presence of NH(4)OH. These polymers were used as sorbent materials for the removal of phenolic derivatives from wastewater. The influence of several parameters (kinetics, pH and polymer structure) on the sorption capacity was evaluated using the batch and the open column methods. Results of adsorption experiments showed that the starch-based materials exhibited high sorption capacities toward phenolic derivatives. The study of the kinetics of pollutant uptake revealed that the adsorbents presented a relatively fast rate of adsorption. The experimental data were examined using the Langmuir and Freundlich models and it was found that the Freundlich model appeared to fit the isotherm data better than the Langmuir model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号