首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Secretin modulation of behavioral and physiological functions in the rat   总被引:2,自引:0,他引:2  
The effect of secretin on behavioral and physiological functions in the rat was investigated. Secretin injected intracerebroventricularly (ICV) significantly increased defecation and decreased novel-object approaches in rats. The peptide showed no significant effects on stereotypic behavior (gnawing, grooming and rearing), open-field locomotor activity however was significantly decreased, an effect that was probably due to a decreased propensity for the rats to initiate locomotor responses. In addition, secretin showed significant effects on respiration rate in anesthetized rats. When the peptide was injected in the lateral ventricle a decrease in respiration rate occurred, but when the brain was perfused from the lateral ventricle to the cisterna magna increases in respiration rate occurred. These data, combined with the facts that secretin and secretin receptors have been identified in the brain indicate that secretin may play a neurotransmitter or neuroregulator role in the central nervous system.  相似文献   

2.
Thyrotropin-releasing hormone (TRH) was administered intracerebroventricularly and it's effects on respiration were evaluated in the alpha-chloralose anesthetized cat. Respiratory activity was measured using a Fleisch pneumotachograph to monitor tracheal airflow. TRH (0.28-28 nmol) caused an elevation in respiratory minute volume which was due to an increase in respiratory rate with no effect on tidal volume. The site of TRH-induced tachypnea was in the hindbrain as both injections into the cisterna magna and the fourth ventricle produced similar effects. No changes in respiratory activity were seen when TRH injection was restricted to the lateral and third ventricles (forebrain). Furthermore, systemic administration of TRH (28 nmol) produced no significant respiratory effects. The active analogue, [3-Me-His2]-TRH (2.7 nmol) produced the same respiratory effects as TRH. The inactive analogue, TRH free acid (28-280 nmol), caused no significant change in respiratory activity. The data suggest that TRH interacts with a specific receptor in the hindbrain of the cat to affect respiration.  相似文献   

3.
Y Tache  M Gunion 《Life sciences》1985,37(2):115-123
Bombesin or gastrin releasing peptide injected into the lateral, third, or fourth ventricle, or into the cisterna magna, inhibited gastric acid secretion induced by a wide variety of gastric acid stimulants in several animal models. Studies of bombesin microinfusion into specific hypothalamic nuclei of intact rats, or injection into the cisterna magna of midbrain transected rats, indicated that the peptide can trigger inhibition of gastric acid secretion from both forebrain and hindbrain structures. The neural pathways mediating bombesin action required the integrity of the cervical spinal cord; the vagus did not play an important role. Spantide, a substance P and bombesin receptor antagonist, was not useful in studying the physiological role of bombesin. This was due both to its inability to reverse the central action of bombesin on gastric secretion, and to its in vivo toxicity.  相似文献   

4.
The effects of taurine (0.8-64.8 mumol) were studied on respiratory activity following intracisternal (cisterna magna) and intracerebroventricular (lateral ventricle) injections in cats anesthetized with alpha-chloralose. Respiratory activity was measured by using a Fleisch pneumotachograph and monitoring tracheal airflow. The flow signal was integrated to obtain tidal volume (VT) and respiratory rate (f) was obtained by counting the number of VT excursions over one minute. Inspiratory (TI), expiratory (TE) and total (TTOT) cycle durations were also determined during this time period. In addition, end-tidal CO2 was continuously monitored. Associated changes in arterial pressure (femoral artery cannula) and heart rate were also determined. After injections into the cisterna magna, taurine caused dose-related decreases in minute ventilation (VE). The maximal decrease in VE was from 495 +/- 59 to 64 +/- 14 ml/min (p less than 0.05), and was due to both decreases in VT (from 27 +/- 3 to 5 +/- 1 ml; p less than 0.05) and f (from 18 +/- 1 to 12 +/- 2 breaths/min; p less than 0.05). TE and TTOT were increased from 2.4 +/- 0.4 to 4.5 +/- 0.6 sec (p less than 0.05) and from 3.7 +/- 0.4 to 6.4 +/- 0.8 sec (p less than 0.05), respectively. Mean inspiratory flow (VT/TI), a measure of inspiratory drive, was decreased from 21 +/- 4 to 4 +/- 2 ml/sec (p less than 0.05). Apnea occurred in 5 of 6 animals after the 64.8 mumol dose. This respiratory depression occurred without any significant change in arterial pressure. After lateral ventricle injections, taurine also caused dose-related, but not as pronounced, decreases in respiratory activity. In addition, taurine caused significant decreases (p less than 0.05) in arterial pressure in doses that decreased VE. Taurine administered intravenously had no significant cardiorespiratory depressant effects. These data indicate that centrally administered taurine produces respiratory depression and, depending on the route of CNS administration, also produces hypotension.  相似文献   

5.
Lysine-8-vasopressin (LVP) was injected into the lateral ventricle (ICV) or into the cisterna magna (c.m.) of ether-anesthetized rats. ICV injection of LVP decreased the blood pressure (BP), whereas c.m. administration increased it. The opposite effects of ICV versus c.m. administration of the peptide might be related to differences in brainstem versus limbic-midbrain structures in the regulation of blood pressure, and suggest that both mechanisms can be influenced by vasopressin.  相似文献   

6.
Experiments were conducted to compare the blood pressure and heart rate responses of conscious rats given intracerebroventricular (ICV) injections of adrenocorticotropin (ACTH 1-24) and corticotropin releasing factor (CRF). Under sodium pentobarbital anaesthesia, rats were implanted with a stainless-steel cannula into the lateral cerebral ventricle and had their right femoral artery and vein cannulated. Upon recovery (24-48 hr later) conscious, unrestrained rats were given ICV injections (total volume 5 microliter by gravity flow) of sterile saline, ACTH (1-24) (0.85 and 1.7 nmoles) or CRF (0.55 and 1.1 nmoles) and blood pressure and heart rate were monitored over the next 2 hr (from the abdominal aorta via the femoral arterial catheter). Both ACTH and CRF caused mean arterial pressure (MAP) to increase, which was paralleled with increases in mean heart rate (MHR). Moreover, these elevations in MAP and MHR were temporally associated with excessive grooming (for ACTH) and locomotor activity (for CRF), which occurred before and lasted as long as MAP and MHR were enhanced. Intravenous (IV) pretreatment whereby naloxone was given 10 min before ICV administration of ACTH (1.7 nmoles) or CRF (1.1 nmoles), showed that naloxone blocked the behavioral, pressor and tachycardic effects of both ACTH and CRF. The results demonstrate that the pressor, tachycardic and locomotor effects evoked in conscious rats by ICV administration of ACTH or CRF are antagonized by naloxone and that their hemodynamic changes may, in part, be mediated by prior behavioral activation.  相似文献   

7.
Rats were injected with 1 μg of alpha-melanocyte stimulating hormone (α-MSH) into the third ventricle and locally in the ventral tegmental area and in different regions of the substantia nigra. The modifications produced on grooming behavior and locomotion as well as on the dopamine content of the nucleus accumbens and the caudate putamen, were studied. Both intraventricular peptide administration and microinjections into the ventral tegmental area induced excessive grooming and a significant increase of the locomotor activity. The dopamine content of the nucleus accumbens and caudate putamen was markedly reduced. Injections of the peptide into the substantia nigra pars compacta failed to induce excessive grooming but did provoke a slight increase in locomotor activity and a smaller change in caudate dopamine content than that observed by injections in the ventral tegmental area or in the third ventricle. Dopamine levels in the nucleus accumbens were not changed. Finally, the injections of α-MSH into the lateral substantia nigra did not produce either biochemical or behavioral changes.The results suggests that α-MSH can modify, directly or indirectly, the striatal dopaminergic activity and that the behavioral alterations observed such as excessive grooming, could be mediated by the activation of the dopamine cells from the ventral tegmental area, that in turn may provoke a significative release of dopamine at the caudate putamen nucleus as well as in nucleus accumbens.  相似文献   

8.
Corticotropin releasing factor (CRF) injected intracerebroventricularly to hypophysectomized and sham hypophysectomized rats produced a dose dependent increase in locomotor activity, but in untreated hypophysectomized rats 10× more CRF was needed to produce a significant increase in activity. Concomitant daily supplements of rat growth hormone, thyroxine, and corticosterone to the hypophysectomized rats eliminated locomotor activity differences between the two groups. There was no statistically significant difference in locomotor response to either saline, 0.1 μg CRF, 1.0 μg CRF or 10.0 μg CRF in the group of animals receiving hormonal supplements. These results demonstrate that CRF can produce behavioral activation in rats independently of its effects on releasing hormones from the pituitary gland.  相似文献   

9.
Intracerebroventricular (icv) injections of corticotropin-releasing factor (CRF; 25 ng) given to male rough-skinned newts (Taricha granulosa) stimulated locomotor activity tested in a circular arena starting 35 min after the injection. The CRF receptor antagonist, alpha-helical CRF9-41 (ahCRF; 250 or 500 ng), injected icv concurrently with CRF blocked CRF-induced locomotor activity. In contrast, icv injection of ahCRF had no effect on spontaneous locomotor activity. Other studies examined the effect of ahCRF on the elevated locomotor activity that was observed when the animals were stressed (handled or placed in warm water). The CRF antagonist dose dependently attenuated the response to either handling or warm stress tested 2 hr after drug treatment. We also examined the effect of the alpha 2-adrenergic agonist, clonidine, on spontaneous and CRF-induced locomotor activity. Clonidine injected icv dose dependently suppressed spontaneous locomotor activity but not CRF-induced locomotor activity. These studies support the hypothesis that endogenous CRF is involved in mediating stress-induced locomotor activity and indicate that the effects of CRF on locomotor activity are independent of activation of the alpha 2-adrenergic system.  相似文献   

10.
The uptake of hydroxystilbamidine (OHSt, FluoroGold equivalent) and wheat germ agglutinin (WGA), into the hypothalamus, two hours after injections into either the circulation or the cerebrospinal fluid, were compared in adult rats. Following intravenous injection, OHSt was found in astrocytes of the median eminence and medial part of the arcuate nucleus whereas WGA intensely labelled the blood vessels and ependymal cells throughout the hypothalamus. In complete contrast, intracerebroventricular (icv) injection into the lateral ventricle resulted in OHSt uptake by ependymocytes and astrocytes in the area adjacent to the third ventricle, with virtually no uptake in regions taking up this dye following systematic injections, i.e., the median eminence and medial arcuate. Following icv injection WGA labelling was intense in all parts of the ependymal layer of the third ventricle, including the α- and β-tanycytes. Injections into the cisterna magna gave a different pattern of uptake with OHSt being found only in astrocytes in the ventral part of the hypothalamus lateral to the arcuate nucleus whilst WGA uptake was virtually absent. This highlights the regional and cellular specialisation for uptake of molecules from the circulation and CSF. The median eminence and medial arcuate take up molecules from the circulation, with different cell types taking up different molecules. As the CSF flows through the ventricular system, different cells lining the ventricular and subarachnoid spaces take up molecules differentially. Molecules in the CSF appear to be excluded from the median eminence and medial arcuate region.This work was supported by the EU Grant QLRT-2001-00826.  相似文献   

11.
The anxiety- and stress-related neuropeptide corticotropin-releasing factor (CRF) elicits behavioral changes in vertebrates including increases in behavioral arousal and locomotor activity. Intracerebroventricular injections of CRF in an amphibian, the roughskin newt (Taricha granulosa), induces rapid increases in locomotor activity in both intact and hypophysectomized animals. We hypothesized that this CRF-induced increase in locomotor activity involves a central effect of CRF on serotonergic neurons, based on known stimulatory actions of serotonin (5-hydroxytryptamine, 5-HT) on spinal motor neurons and the central pattern generator for locomotor activity in vertebrates. In Experiment 1, we found that neither intracerebroventricular injections of low doses of CRF (25 ng) nor the selective serotonin reuptake inhibitor fluoxetine (10, 100 ng), by themselves, altered locomotor activity. In contrast, newts treated concurrently with CRF and fluoxetine responded with marked increases in locomotor activity. In Experiment 2, we found that increases in locomotor activity following co-administration of CRF (25 ng) and fluoxetine (100 ng) were associated with decreased 5-HT concentrations in a number of forebrain structures involved in regulation of emotional behavior and emotional states, including the ventral striatum, amygdala pars lateralis, and dorsal hypothalamus, measured 37 min after treatment. These results are consistent with the hypothesis that CRF stimulates locomotor activity through activation of serotonergic systems.  相似文献   

12.
The recently isolated Corticotropin Releasing Factor (CRF) related peptide, urocortin, has been reported to elicit a different behavioral profile than that of CRF. CRF is a potent anxiogenic agent and stimulant of motor activity whereas under similar conditions urocortin is a potent anorectic and mild locomotor stimulant. The neurophysiological effects of this newly synthesized peptide have not yet been examined. The present study evaluated the effects of intracerebroventricular administration of 3 doses of urocortin on the electroencephalogram (EEG) and on Event-Related Potentials (ERPs) in rats. Twenty male Wistar rats were implanted with electrodes in the amygdala and dorsal hippocampus, a cannula into the lateral ventricle, and skull surface electrodes over the frontal and parietal cortices. Following recovery from surgery, urocortin (0.01-1.0 microg) was infused into the lateral ventricle 5 min prior to the recording of EEG (10 min) and ERPs (10 min). Urocortin at any of the doses, did not produce any electrographic or behavioral signs of seizure activity. The predominant effect of urocortin infusion on EEG spectral activity was an increase in mean power in the 4-16 Hz range in the frontal cortex and a decrease in EEG stability in the frontal cortex and amygdala. Urocortin administration also decreased the latency of the P3 component of the ERP in the amygdala and hippocampus. These neurophysiological effects, that only partially overlap with those of CRF, are consistent with the behavioral profile described following urocortin administration in rats. Overall, these data further support the assertion that urocortin functions as a mild CNS stimulant enhancing arousal, as measured by EEG, and modulating the speed of stimulus evaluation as measured by ERPs.  相似文献   

13.
Antipyretic effect of centrally administered CRF   总被引:2,自引:0,他引:2  
CRF injected into the third cerebral ventricle (0.5-2.5 micrograms) caused dose-related reductions in fever induced in rabbits by IV administration of leukocytic pyrogen. Control injections of CRF when the same animals were afebrile did not alter normal body temperature. Intravenous injections of 5 and 20 micrograms CRF, doses known to release ACTH and corticosteroids into the bloodstream in other species, did not reduce fever. CRF injected into the cerebral ventricles may be antipyretic per se, or it may reduce fever by virtue of central release of the antipyretic peptides ACTH and alpha-MSH.  相似文献   

14.
AimsThe hypothalamic arcuate nucleus (ARH) is one of the brain regions with the highest levels of catalase expression. Acetaldehyde, metabolized from ethanol in the CNS through the actions of catalase, has a role in the behavioral effects observed after ethanol administration. In previous studies acetaldehyde injected in the lateral ventricles or in the substantia nigra reticulata (SNR) mimicked the behavioral stimulant effects of centrally administered ethanol.Main methodsIn the present study we assessed the effects of acetaldehyde administered either into the ARH into a dorsal control or into the third ventricle on locomotion and rearing observed in 30 min sessions in an open field.Key findingsAcetaldehyde injected into the ARH induced horizontal locomotion and rearing for 20 min. In contrast, administration of acetaldehyde into a control site dorsal to the ARH did not have any effect on locomotion. Although acetaldehyde administration into the third ventricle also induced locomotion, the time course for the effect in this area was different from the time course following ARH injections. Acetaldehyde in the ARH produced a long lasting induction of locomotion, while with intraventricular injections the effects disappeared after 5 min.SignificanceThe present results are consistent with previous studies demonstrating that acetaldehyde is an active metabolite of ethanol, which can have locomotor stimulant properties when administered in the ventricular system of the brain or into specific brain nuclei. Some brain nuclei rich in catalase (i.e.; SNR and ARH) could be mediating some of the locomotor stimulant effects of ethanol through its conversion to acetaldehyde.  相似文献   

15.
Administration of TRH into the lateral ventricle of unanesthetized rats produced increases in the incidence of hippocampal theta (5.9–9.1 Hz) rhythm, locomotor activity and shaking behavior. The increase in theta rhythm produced by TRH was brief (<5 min) and was coincident with a brief, large increase in locomotor activity. Intracerebroventricular injection of either TRH or D-Ala2-metenkephalinamide (D-Ala2-ME) also induced episodes of shaking behavior. Shakes induced by D-Ala2-ME were associated with the occurrence of hippocampal epileptiform activity whereas those caused by TRH occurred in the absence of any recorded abnormalities in hippocampal activity. These results suggest that the increase in hippocampal theta rhythm after TRH is secondary to the increase in locomotor activity and, that in contrast to enkephalins, shaking behavior caused by TRH may not be related to an action on the electrographic activity of the hippocampus.  相似文献   

16.
Angiotensin II (ANG II) causes a systemic pressor effect when injected into the cerebral ventricles. In the rat fourth ventricle, the effective doses for the ANG II pressor effect are over 100 times larger than in the systemic circulation. Considering the discrepancy of doses, the possibility that ANG II may reach the systemic circulation and promote pressor effects, following injection into the fourth ventricle, was investigated. The effects on blood pressure of different vasoactive peptides that produce pressor responses when injected into the central nervous system were compared. Dose-response curves were obtained for intravenous or fourth cerebroventricular injections of ANG II, lysyl-vasopressin (LVP), bradykinin (BK), or endothelin-1 (ET-1). The ED50 ratios for intracerebroventricular/intraveneous injections were 110 for ANG II, 109 for LVP, 0.01 for BK, and approximately 0.4 for ET-1. In cross-circulation preparations, pressor responses occurred in the donor rat following injection into the fourth cerebral ventricle of the recipient animal, showing that effective doses of ANG II, administered to the fourth cerebral, reach the systemic circulation. The same results were obtained for the microinjection of 4 nmol of LVP into the fourth cerebral ventricle of recipient animals. High-performance reverse-phase liquid chromatography analyses of arterial blood showed that approximately 1% of the [125I]ANG II injected into the fourth cerebral ventricle may be recovered from the systemic circulation a few seconds after the microinjection. The systemic administration of the ANG II receptor antagonist losartan blocked the response to ANG II injected into the fourth ventricle whereas antagonist administration in the same ventricle did not. Angiotensin injections into the lateral ventricle produced pressor responses that were reduced by antagonist administration to the same ventricle but not by systemic administration of the antagonist. The data suggest that the pressor effect resulting from ANG II or LVP injections into the fourth cerebral ventricle may be due to the action of this peptide in the systemic circulation. On the other hand, the pressor effect due to ANG II microinjection into the lateral ventricle apparently results from the direct stimulation of central periventricular structures.  相似文献   

17.
Thyrotrophin-releasing hormone (TRH) and its stable analogues CG3509 and RX77368 were injected directly into the nucleus accumbens, septum and striatum of the rat and locomotor activity was recorded. TRH (5-20 micrograms) caused a dose-dependent increase in locomotor activity when injected into the nucleus accumbens. TRH (20 micrograms) also increased locomotor activity after administration into the septum but not when put into the striatum. Both the TRH analogues (0.1 and 1.0 microgram) produced closely related increases in activity when injected into either the nucleus accumbens or septum but CG3509 was more potent with a longer lasting effect. Also, in contrast with TRH (20 micrograms), both TRH analogues stimulated locomotor activity when injected into the striatum at a dose of 1 microgram but the effect was less marked and delayed in onset compared to the nucleus accumbens and septum response. Dopamine (100 micrograms) injected into the accumbens or septum also produced significant increases in locomotor activity. The locomotor effects of the peptides are discussed in relation to a possible dopamine-mediated mechanism which contrasts with the actions of TRH and the analogues on barbiturate anaesthesia.  相似文献   

18.
Locomotor activity of rough-skinned newts (Taricha granulosa) was significantly higher in intact and hypophysectomized males injected intracranially with 100 ng CRF (ovine corticotropin-releasing factor) than in those injected with 10 ng CRF or saline. In addition, an injection of corticosterone or dexamethasone failed to stimulate newt locomotor activity. These results provide evidence that CRF can act independently of pituitary hormones to stimulate locomotor activity in a nonmammalian vertebrate.  相似文献   

19.
Abstract—
  • 1 After intraperitoneal injection, there is negligible incorporation of [2-14C]-mevalonic lactone into the CNS of the adult rat.
  • 2 Mevalonic lactone injected into the CSF is quickly transferred to blood.
  • 3 Mevalonic lactone injected in the cistema magna or the lateral ventricle of the brain does not diffuse readily into the whole CSF. Spinal cord cholesterol is most heavily labelled after intracisternal injection, as is brain cholesterol after intraventricular administration.
  • 4 After intraventricular perfusion, the diffusion of mevalonic lactone into the ventricle opposite the side of the injection is increased when the rate of perfusion is doubled from 5 to 10 μ1/hr. After injection, optimal homogeneity is obtained if a large volume (70μl) is administered.
  • 5 An increase in the volume of injection from 70 μl to 130μl does not alter the distribution of activity between the left and right ventricles, nor does it increase the diffusion of mevalonic lactone from ventricle to spinal cord CSF.
  • 6 The mean yield of mevalonic lactone incorporation into brain cholesterol is much higher after injection than after perfusion of precursor into the lateral cerebral ventricle.
  相似文献   

20.
The effects of intracranial transforming growth factor (TGF)-beta3 on spontaneous motor activity and energy metabolism were examined in rats. After injection of TGF-beta3 into the cisterna magna of the rat, spontaneous motor activity decreased significantly for 1 h. The intracranial injection of TGF-beta3 produced an immediate decrease in respiratory exchange ratio (RER). No significant changes were observed in energy expenditure. TGF-beta3 induced a significant increase in total fat oxidation and a decrease in total carbohydrate oxidation. Furthermore, the serum substrates associated with fat metabolism were significantly altered in rats injected with TGF-beta3. Both lipoprotein lipase activity in skeletal muscle and the concentration of serum ketone bodies increased, suggesting that the increase in fat oxidation caused by TGF-beta3 may have occurred in the liver and muscle. Intracranial injection of TGF-beta3 appeared to evoke a switch in the energy substrates accessed in energy expenditure. These results suggest that the release of TGF-beta3 in the brain by exercise is a signal for regulating energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号