首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Y‐chromosome‐specific haplotypes (Y‐haplotypes) constructed using single nucleotide polymorphisms (Y‐SNPs) in the MSY (male‐specific region of the Y‐chromosome) are valuable in population genetic studies. But sequence variants in the yak MSY region have been poorly characterized so far. In this study, we screened a total of 16 Y‐chromosome‐specific gene segments from the ZFY, SRY, UTY, USP9Y, AMELY and OFD1Y genes to identify Y‐SNPs in domestic yaks. Six novel Y‐SNPs distributed in the USP9Y (g.223C>T), UTY19 (g.158A>C and g.169C>T), AMELY2 (g.261C>T), OFD1Y9 (g.165A>G) and SRY4 (g.104G>A) loci, which can define three Y‐haplotypes (YH1, YH2 and YH3) in yaks, were discovered. YH1 was the dominant and presumably most ancient haplotype based on the comparison of UTY19 locus with other bovid species. Interestingly, we found informative UTY19 markers (g.158A>C and g.169C>T) that can effectively distinguish the three yak Y‐haplotypes. The nucleotide diversity was 1.7 × 10?4 ± 0.3 × 10?4, indicating rich Y‐chromosome diversity in yaks. We identified two highly divergent lineages (YH1 and YH2 vs. YH3) that share similar frequencies (YH1 +  YH2: 0.82–0.89, YH3: 0.11–0.18) among all three populations. In agreement with previous mtDNA studies, we supported the hypothesis that the two highly divergent lineages (YH1 and YH2 vs. YH3) derived from a single gene pool, which can be explained by the reunion of at least two paternal populations with the divergent lineages already accumulated before domestication. We estimated a divergence time of 408 110 years between the two divergent lineages, which is consistent with the data from mitochondrial DNA in yaks.  相似文献   

2.
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (= 0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment.  相似文献   

3.
Variation in mitochondrial DNA (mtDNA) and Y‐chromosome haplotypes was analysed in nine domestic sheep breeds (159 rams) and 21 mouflon ( Ovis musimon) sampled in the East Adriatic. Mitochondrial DNA analyses revealed a high frequency of type B haplotypes, predominantly in European breeds, and a very low frequency of type A haplotypes, which are more frequent in some Asian breeds. Mitochondrial haplotype Hmt‐3 was the most frequent (26.4%), and 37.1%, 20.8% and 7.6% of rams had haplotypes one, two and three mutations remote from Hmt‐3 respectively. In contrast, Y‐chromosome analyses revealed extraordinary paternal allelic richness: HY‐6, 89.3%; HY‐8, 5.0%; HY‐18, 3.1%; HY‐7, 1.3%; and HY‐5, 1.3%. In fact, the number of haplotypes observed is comparable to the number found in Turkish breeds and greater than the number found in European breeds so far. Haplotype HY‐18 (A‐oY1/135‐SRYM18), identified here for the first time, provides a link between the haplotype HY‐12 (A‐oY1/139‐SRYM18) found in a few rams in Turkey and haplotype HY‐9 (A‐oY1/131‐SRYM18) found in one ram in Ethiopia. All mouflons had type B mtDNA haplotypes, including the private haplotype (Hmt‐55), and all were paternally monomorphic for haplotype HY‐6. Our data support a quite homogeneous maternal origin of East Adriatic sheep, which is a characteristic of European breeds. At the same time, the high number of haplotypes found was surprising and intriguing, and it begs for further analysis. Simultaneous analysis of mtDNA and Y‐chromosome information allowed us to detect a large discrepancy between maternal and paternal lineages in some populations. This is most likely the result of breeder efforts to ‘upgrade’ local populations using rams with different paternal origins.  相似文献   

4.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

5.
Investigations of genetic diversity and domestication in South American camelids (SAC) have relied on autosomal microsatellite and maternally‐inherited mitochondrial data. We present the first integrated analysis of domestic and wild SAC combining male and female sex‐specific markers (male specific Y‐chromosome and female‐specific mtDNA sequence variation) to assess: (i) hypotheses about the origin of domestic camelids, (ii) directionality of introgression among domestic and/or wild taxa as evidence of hybridization and (iii) currently recognized subspecies patterns. Three male‐specific Y‐chromosome markers and control region sequences of mitochondrial DNA are studied here. Although no sequence variation was found in SRY and ZFY, there were seven variable sites in DBY generating five haplotypes on the Y‐chromosome. The haplotype network showed clear separation between haplogroups of guanaco–llama and vicuña–alpaca, indicating two genetically distinct patrilineages with near absence of shared haplotypes between guanacos and vicuñas. Although we document some examples of directional hybridization, the patterns strongly support the hypothesis that llama (Lama glama) is derived from guanaco (Lama guanicoe) and the alpaca (Vicugna pacos) from vicuña (Vicugna vicugna). Within male guanacos we identified a haplogroup formed by three haplotypes with different geographical distributions, the northernmost of which (Peru and northern Chile) was also observed in llamas, supporting the commonly held hypothesis that llamas were domesticated from the northernmost populations of guanacos (L. g. cacilensis). Southern guanacos shared the other two haplotypes. A second haplogroup, consisting of two haplotypes, was mostly present in vicuñas and alpacas. However, Y‐chromosome variation did not distinguish the two subspecies of vicuñas.  相似文献   

6.
Variation in two SNPs and one microsatellite on the Y chromosome was analyzed in a total of 663 rams representing 59 breeds from a large geographic range in northern Eurasia. SNPA‐oY1 showed the highest allele frequency (91.55%) across the breeds, whereas SNPG‐oY1 was present in only 56 samples. Combined genotypes established seven haplotypes (H4, H5, H6, H7, H8, H12 and H19). H6 dominated in northern Eurasia, and H8 showed the second‐highest frequency. H4, which had been earlier reported to be absent in European breeds, was detected in one European breed (Swiniarka), whereas H7, which had been previously identified to be unique to European breeds, was present in two Chinese breeds (Ninglang Black and Large‐tailed Han), one Buryatian (Transbaikal Finewool) and two Russian breeds (North Caucasus Mutton‐Wool and Kuibyshev). H12, which had been detected only in Turkish breeds, was also found in Chinese breeds in this work. An overall low level of haplotype diversity (median h = 0.1288) was observed across the breeds with relatively higher median values in breeds from the regions neighboring the Near Eastern domestication center of sheep. H6 is the dominant haplotype in northwestern and eastern China, in which the haplotype distribution could be explained by the historical translocations of the H4 and H8 Y chromosomes to China via the Mongol invasions followed by expansions to northwestern and eastern China. Our findings extend previous results of sheep Y chromosomal genetic variability and indicate probably recent paternal gene flows between sheep breeds from distinct major geographic regions.  相似文献   

7.
In subtropical China, large‐scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre‐Quaternary events. Twenty‐three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species‐specific mosaic distribution of haplotypes, with many of them being range‐restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within‐population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the time unit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long‐term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species‐specific mosaic distribution of lineages.  相似文献   

8.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

9.
10.
This study was a first analysis of paternal genetic diversity for extensive Asian domestic goats using SRY gene sequences. Sequencing comparison of the SRY 3′‐untranslated region among 210 Asian goats revealed four haplotypes (Y1A, Y1B, Y2A and Y2B) derived from four variable sites including a novel substitution detected in this study. In Asian goats, the predominant haplotype was Y1A (62%) and second most common was Y2B (30%). Interestingly, the Y2B was a unique East Asian Y chromosomal variant, which differentiates eastern and western Eurasian goats. The SRY geographic distribution in Myanmar and Cambodia indicated predominant the haplotype Y1A in plains areas and a high frequency of Y2B in mountain areas. The results suggest recent genetic infiltration of modern breeds into South‐East Asian goats and an ancestral SRY Y2B haplotype in Asian native goats.  相似文献   

11.
Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta‐globin haplotypes. Haplotype A is very similar to the goat beta‐globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta‐C globin, which encodes a globin with high oxygen affinity. We surveyed the beta‐globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2–3 million years old. Approximately 40 kb of the sequence flanking the ~37‐kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta‐globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40‐kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40‐kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non‐Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries.  相似文献   

12.
Y‐chromosome markers are important tools for studying male‐specific gene flow within and between populations, hybridization patterns and kinship. However, their use in non‐human mammals is often hampered by the lack of Y‐specific polymorphic markers. We identified new male‐specific short tandem repeats (STRs) in Sus scrofa using the available genome sequence. We selected four polymorphic loci (5–10 alleles per locus), falling in one duplicated and two single‐copy regions. A total of 32 haplotypes were found by screening 211 individuals from eight wild boar populations across Europe and five domestic pig populations. European wild boar were characterized by significantly higher levels of haplotype diversity compared to European domestic pigs (HD = 0.904 ± 0.011 and HD = 0.491 ± 0.077 respectively). Relationships among STR haplotypes were investigated by combining them with single nucleotide polymorphisms at two linked genes (AMELY and UTY) in a network analysis. A differentiation between wild and domestic populations was observed (FST = 0.229), with commercial breeds sharing no Y haplotype with the sampled wild boar. Similarly, a certain degree of geographic differentiation was observed across Europe, with a number of local private haplotypes and high diversity in northern populations. The described Y‐chromosome markers can be useful to track male inheritance and gene flow in wild and domestic populations, promising to provide insights into evolutionary and population genetics in Sus scrofa.  相似文献   

13.
Body weight is a complex trait in cattle associated with commonly used commercial breeding measurements related to growth. Although many quantitative trait loci (QTL) for body weight have been identified in cattle so far, searching for genetic determinants in different breeds or environments is promising. Therefore, we carried out a genome‐wide association study (GWAS) in two cattle populations from the Russian Federation (Siberian region) using the GGP HD150K array containing 139 376 single nucleotide polymorphism (SNP) markers. Association tests for 107 550 SNPs left after filtering revealed five statistically significant SNPs on BTA5, considering a false discovery rate of less than 0.05. The chromosomal region containing these five SNPs contains the CCND2 gene, which was previously associated with average daily weight gain and body mass index in US beef cattle populations and in humans respectively. Our study is the first GWAS for body weight in beef cattle populations from the Russian Federation. The results provided here suggest that, despite the existence of breed‐ and species‐specific QTL, the genetic architecture of body weight could be evolutionarily conserved in mammals.  相似文献   

14.
Domestication in the near eastern region had a major impact on the gene pool of humpless taurine cattle (Bos taurus). As a result of subsequent natural and artificial selection, hundreds of different breeds have evolved, displaying a broad range of phenotypic traits. Here, 10 Eurasian B. taurus breeds from different biogeographic and production conditions, which exhibit different demographic histories and have been under artificial selection at various intensities, were investigated using the Illumina BovineSNP50 panel to understand their genetic diversity and population structure. In addition, we scanned genomes from eight breeds for signatures of diversifying selection. Our population structure analysis indicated six distinct breed groups, the most divergent being the Yakutian cattle from Siberia. Selection signals were shared (experimental P‐value < 0.01) with more than four breeds on chromosomes 6, 7, 13, 16 and 22. The strongest selection signals in the Yakutian cattle were found on chromosomes 7 and 21, where a miRNA gene and genes related to immune system processes are respectively located. In general, genomic regions indicating selection overlapped with known QTL associated with milk production (e.g. on chromosome 19), reproduction (e.g. on chromosome 24) and meat quality (e.g. on chromosome 7). The selection map created in this study shows that native cattle breeds and their genetic resources represent unique material for future breeding.  相似文献   

15.
Paternal origins of Chinese cattle   总被引:2,自引:0,他引:2  
To determine the genetic diversity and paternal origin of Chinese cattle, 302 males from 16 Chinese native cattle breeds as well as 30 Holstein males and four Burma males as controls were analysed using four Y‐SNPs and two Y‐STRs. In Chinese bulls, the taurine Y1 and Y2 haplogroups and indicine Y3 haplogroup were detected in seven, 172 and 123 individuals respectively, and these frequencies varied among the Chinese cattle breeds examined. Y2 dominates in northern China (91.4%), and Y3 dominates in southern China (90.8%). Central China is an admixture zone, although Y2 predominates overall (72.0%). The geographical distributions of the Y2 and Y3 haplogroup frequencies revealed a pattern of male indicine introgression from south to north China. The three Y haplogroups were further classified into one Y1 haplotype, five Y2 haplotypes and one Y3 haplotype in Chinese native bulls. Due to the interplay between taurine and indicine types, Chinese cattle represent an extensive reservoir of genetic diversity. The Y haplotype distribution of Chinese cattle exhibited a clear geographical structure, which is consistent with mtDNA, historical and geographical information.  相似文献   

16.
There has been considerable discussion on the origin of the red wolf and eastern wolf and their evolution independent of the gray wolf. We analyzed mitochondrial DNA (mtDNA) and a Y‐chromosome intron sequence in combination with Y‐chromosome microsatellites from wolves and coyotes within the range of extensive wolf–coyote hybridization, that is, eastern North America. The detection of divergent Y‐chromosome haplotypes in the historic range of the eastern wolf is concordant with earlier mtDNA findings, and the absence of these haplotypes in western coyotes supports the existence of the North American evolved eastern wolf (Canis lycaon). Having haplotypes observed exclusively in eastern North America as a result of insufficient sampling in the historic range of the coyote or that these lineages subsequently went extinct in western geographies is unlikely given that eastern‐specific mtDNA and Y‐chromosome haplotypes represent lineages divergent from those observed in extant western coyotes. By combining Y‐chromosome and mtDNA distributional patterns, we identified hybrid genomes of eastern wolf, coyote, gray wolf, and potentially dog origin in Canis populations of central and eastern North America. The natural contemporary eastern Canis populations represent an important example of widespread introgression resulting in hybrid genomes across the original C. lycaon range that appears to be facilitated by the eastern wolf acting as a conduit for hybridization. Applying conventional taxonomic nomenclature and species‐based conservation initiatives, particularly in human‐modified landscapes, may be counterproductive to the effective management of these hybrids and fails to consider their evolutionary potential.  相似文献   

17.
Analysis of genetic diversity and population structure among Quercus fabri populations is essential for the conservation and utilization of Q. fabri resources. Here, the genetic diversity and structure of 158 individuals from 13 natural populations of Quercus fabri in China were analyzed using genotyping‐by‐sequencing (GBS). A total of 459,564 high‐quality single nucleotide polymorphisms (SNPs) were obtained after filtration for subsequent analysis. Genetic structure analysis revealed that these individuals can be clustered into two groups and the structure can be explained mainly by the geographic barrier, showed gene introgression from coastal to inland areas and high mountains could significantly hinder the mutual introgression of genes. Genetic diversity analysis indicated that the individual differences within groups are greater than the differences between the two groups. These results will help us better understand the genetic backgrounds of Q. fabri.  相似文献   

18.
Variation in coat colour genotypes of archaeological cattle samples from Finland was studied by sequencing 69 base pairs of the extension locus (melanocortin 1‐receptor, MC1R) targeting both a transition and a deletion defining the three main alleles, such as dominant black (ED), wild type (E+) and recessive red (e). The 69‐bp MC1R sequence was successfully analysed from 23 ancient (1000–1800 AD) samples. All three main alleles and genotype combinations were detected with allele frequencies of 0.26, 0.17 and 0.57 for ED, E+ and e respectively. Recessive red and dominant black alleles were detected in both sexes. According to the best of our knowledge, this is the first ancient DNA study defining all three main MC1R alleles. Observed MC1R alleles are in agreement with calculated phenotype frequencies from historical sources. The division of ancient Finnish cattle population into modern Finnish breeds with settled colours was dated to the 20th century. From the existing genotyped populations in Europe (43 breeds, = 2360), the closest match to ancient MC1R genotype frequencies was with the Norwegian native multicoloured breeds. In combined published genotype data of ancient (= 147) and genotypes and phenotypes of modern Nordic cattle (= 738), MC1R allele frequencies showed temporal changes similar to neutral mitochondrial DNA and Y‐chromosomal haplotypes analysed earlier. All three markers indicate major change in genotypes in Nordic cattle from the Late Iron Age to the Medieval period followed by slower change through the historical periods until the present.  相似文献   

19.
Aphid species within the genus Tuberculatus Mordvilko (Hemiptera: Aphididae) exhibit a variety of interactions with ants, ranging from close associations to non‐attendance. A previous study indicated that despite wing possession, ant‐attended Tuberculatus species exhibited low dispersal rates compared with non‐attended species. This study examined if presence or absence of mutualistic interactions and habitat continuity of host plants affected intraspecific genetic diversity and genetic differentiation in mitochondrial DNA cytochrome oxidase I (COI) sequences. Sympatric ant‐attended Tuberculatus quercicola (Matsumura) (Hemiptera: Aphididae) and non‐attended Tuberculatus paiki Hille Ris Lambers (Hemiptera: Aphididae) were collected from the daimyo oak Quercus dentata Thunberg (Fagales: Fagaceae) in Japan and examined for haplotype variability. Seventeen haplotypes were identified in 568 T. quercicola individuals representing 23 populations and seven haplotypes in 425 T. paiki representing 19 populations. Haplotype diversity, which indicates the mean number of differences between all pairs of haplotypes in the sample, and nucleotide diversity were higher in T. quercicola than T. paiki. Analysis of molecular variance (AMOVA) showed higher genetic differentiation among populations within groups of T. quercicola (39.8%) than T. paiki (22.6%). The effects of attendant ant species on genetic differentiation in T. quercicola were not distinguishable from geographic factors. Despite low dispersal rates, host plant habitat continuity might facilitate widespread dispersal of a T. quercicola haplotype in Hokkaido. These results suggested that following T. quercicola colonization, gene flow among populations was limited, resulting in genetic drift within populations. However, frequent T. paiki dispersal is clearly evident by low genetic differentiation among populations within groups, resulting in lower haplotype diversity.  相似文献   

20.
Sheep were among the first domesticated animals to appear in Estonia in the late Neolithic and became one of the most widespread livestock species in the region from the Late Bronze Age onwards. However, the origin and historical expansion of local sheep populations in Estonia remain poorly understood. Here, we analysed fragments of the hypervariable D‐loop of mitochondrial DNA (mtDNA; 213 bp) and the Y‐chromosome SRY gene (130 bp) extracted from 31 archaeological sheep bones dated from approximately 800 BC to 1700 AD. The ancient DNA data of sheep from Estonia were compared with ancient sheep from Finland as well as a set of contemporary sheep breeds from across Eurasia in order to place them in a wider phylogeographical context. The analysis shows that: (i) 24 successfully amplified and analysed mtDNA sequences of ancient sheep cluster into two haplogroups, A and B, of which B is predominant; (ii) four of the ancient mtDNA haplotypes are novel; (iii) higher mtDNA haplotype diversity occurred during the Middle Ages as compared to other periods, a fact concordant with the historical context of expanding international trade during the Middle Ages; (iv) the proportion of rarer haplotypes declined during the expansion of sheep from the Near Eastern domestication centre to the northern European region; (v) three male samples showed the presence of the characteristic northern European haplotype, SNP G‐oY1 of the Y‐chromosome, and represent the earliest occurrence of this haplotype. Our results provide the first insight into the genetic diversity and phylogeographical background of ancient sheep in Estonia and provide basis for further studies on the temporal fluctuations of ancient sheep populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号