首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aged mice exhibit ~ 5–10‐fold increases in an ordinarily minor CD21/35? CD23? mature B‐cell subset termed age‐associated B cells (ABCs). ABCs from old, but not young, mice induce apoptosis in pro‐B cells directly through secretion of TNFα. In addition, aged ABCs, via TNFα, stimulate bone marrow cells to suppress pro‐B‐cell growth. ABC effects can be prevented by the anti‐inflammatory cytokine IL‐10. Notably, CD21/35+ CD23+ follicular (FO) splenic and FO‐like recirculating bone marrow B cells in both young and aged mice contain a subpopulation that produces IL‐10. Unlike young adult FO B cells, old FO B cells also produce TNFα; however, secretion of IL‐10 within this B‐cell population ameliorates the TNFα‐mediated effects on B‐cell precursors. Loss of B‐cell precursors in the bone marrow of old mice in vivo was significantly associated with increased ABC relative to recirculating FO‐like B cells. Adoptive transfer of aged ABC into RAG‐2 KO recipients resulted in significant losses of pro‐B cells within the bone marrow. These results suggest that alterations in B‐cell composition during old age, in particular, the increase in ABC within the B‐cell compartments, contribute to a pro‐inflammatory environment within the bone marrow. This provides a mechanism of inappropriate B‐cell ‘feedback’ that promotes down‐regulation of B lymphopoiesis in old age.  相似文献   

2.
3.
《Cell reports》2023,42(7):112722
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
  相似文献   

4.
B‐cell maturation antigen (BCMA) is expressed on normal and malignant plasma cells and represents a potential target for therapeutic intervention. In this study, we characterized the mechanism underlying the protein kinase B (Akt) and c‐Jun N‐terminal kinase (JNK) pathways and BCMA interactions in regulating multiple myeloma (MM) cell survival. It was found that the expression levels of B cell‐activating factor (BAFF) and BCMA were increased in MM cells as compared with those in normal controls. The proliferation of U266 cells was induced by recombinant human BAFF (rhBAFF) and could also be decreased by BCMA siRNA. The expression of Bcl‐2 protein was up‐regulated, and Bax protein was down‐regulated after rhBAFF treatment, which could be reversed by BCMA siRNA. Similarly, the protein p‐JNK and p‐Akt were activated by rhBAFF and could be changed by BCMA siRNA. In addition, the BCMA mRNA and protein expression levels were decreased after treatment with Akt and JNK pathway inhibitors. These results suggest that Akt and JNK pathways are involved in the regulation of BCMA. A novel BAFF/BCMA signalling pathway in MM may be a new therapeutic target for MM. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Animals show a large variability of lifespan, ranging from short‐lived as Caenorhabditis elegans to immortal as Hydra. A fascinating case is flatworms, in which reversal of aging by regeneration is proposed, yet conclusive evidence for this rejuvenation‐by‐regeneration hypothesis is lacking. We tested this hypothesis by inducing regeneration in the sexual free‐living flatworm Macrostomum lignano. We studied survival, fertility, morphology, and gene expression as a function of age. Here, we report that after regeneration, genes expressed in the germline are upregulated at all ages, but no signs of rejuvenation are observed. Instead, the animal appears to be substantially longer lived than previously appreciated, and genes expressed in stem cells are upregulated with age, while germline genes are downregulated. Remarkably, several genes with known beneficial effects on lifespan when overexpressed in mice and C. elegans are naturally upregulated with age in M. lignano, suggesting that molecular mechanism for offsetting negative consequences of aging has evolved in this animal. We therefore propose that M. lignano represents a novel powerful model for molecular studies of aging attenuation, and the identified aging gene expression patterns provide a valuable resource for further exploration of anti‐aging strategies.  相似文献   

6.
7.
In aged mice, new B‐cell development is diminished and the antibody repertoire becomes more autoreactive. Our studies suggest that (i) apoptosis contributes to reduced B lymphopoiesis in old age and preferentially eliminates those B‐cell precursors with higher levels of the surrogate light chain (SLC) proteins (λ5/VpreB) and (ii) λ5low B‐cell precursors generate new B cells which show increased reactivity to the self‐antigen/bacterial antigen phosphorylcholine (PC). Pro‐B cells in old bone marrow as well as pro‐B cells from young adult λ5‐deficient mice are resistant to cytokine‐induced apoptosis (TNFα; TGFβ), indicating that low λ5 expression in pro‐B cells is sufficient to cause increased survival. Transfer of TNFα‐producing ‘age‐associated B cells’ (ABC; CD21/35? CD23?) or follicular (FO) B cells from aged mice into RAG‐2 KO recipients led to preferential loss of λ5high pro‐B cells, but retention of λ5low, apoptosis‐resistant pro‐B cells. In old mice, there is increased reactivity to PC in both immature bone marrow B cells and mature splenic FO B cells. In young mice, absence of λ5 expression led to a similar increase in PC reactivity among bone marrow and splenic B cells. We propose that in old age, increased apoptosis, mediated in part by TNFα‐producing B cells, results in preferential loss of SLChigh pro‐B cells within the bone marrow. Further B‐cell development then occurs via an ‘SLClow’ pathway that not only impairs B‐cell generation, but promotes autoreactivity within the naïve antibody repertoires in the bone marrow and periphery.  相似文献   

8.
Mitochondrial DNA deletions accumulate over the life course in post‐mitotic cells of many species and may contribute to aging. Often a single mutant expands clonally and finally replaces the wild‐type population of a whole cell. One proposal to explain the driving force behind this accumulation states that random drift alone, without any selection advantage, is sufficient to explain the clonal accumulation of a single mutant. Existing mathematical models show that such a process might indeed work for humans. However, to be a general explanation for the clonal accumulation of mtDNA mutants, it is important to know whether random drift could also explain the accumulation process in short‐lived species like rodents. To clarify this issue, we modelled this process mathematically and performed extensive computer simulations to study how different mutation rates affect accumulation time and the resulting degree of heteroplasmy. We show that random drift works for lifespans of around 100 years, but for short‐lived animals, the resulting degree of heteroplasmy is incompatible with experimental observations.  相似文献   

9.
10.
11.
Primary infection with human herpesvirus‐6 (HHV‐6), is followed by its lifelong persistence in the host. Most T‐cell responses to HHV‐6 have been characterized using peripheral blood from healthy adults; however, the role of HHV‐6 infection in immune modulation has not been elucidated for some diseases. Therefore, in this study the immune response to HHV‐6 infection in patients with B‐acute lymphoblastic leukemia (B‐ALL) was analyzed. HHV‐6 load was quantified in blood samples taken at the time of diagnosis of leukemia and on remission. The same concentrations of anti‐ and pro‐inflammatory cytokines (IL‐4, IL‐1, IL‐6, IL‐8, IL‐12p70, IL‐17a, TNF‐α and IFN‐γ) were detected in plasma samples from 20 patients with and 20 without detectable HHV‐6 virus loads in blood. Characterization of T‐cell responses to HHV‐6 showed low specific T‐cells frequencies of 2.08% and 1.46% in patients with and without detectable viral loads, respectively. IFN‐γ‐producing T cells were detected in 0.03%–0.23% and in 0%–0.2% of CD4+T cells, respectively. Strong production of IL‐6 was detected in medium supernatants of challenged T‐cells whatever the HHV‐6 status of the patients (973.51 ± 210.06 versus 825.70 ± 210.81 pg/mL). However, concentrations of TNF‐α and IFN‐γ were low. Thus, no association between plasma concentrations of cytokines and detection of HHV‐6 in blood was identified, suggesting that HHV‐6 is not strongly associated with development of B‐ALL. The low viral loads detected may correspond with latently infected cells. Alternatively, HHV‐6B specific immune responses may be below the detection threshold of the assays used.  相似文献   

12.
How the B‐cell antigen receptor (BCR) is activated upon interaction with its cognate antigen or with anti‐BCR antibodies is not fully understood. We have recently shown that B‐cell activation is accompanied by the opening of the pre‐organized BCR oligomers, an observation that strengthens the role of receptor reorganization in signalling. We have now analysed the BCR oligomer opening and signalling upon treatment with different monovalent stimuli. Our results indicate that monovalent antigens are able to disturb and open the BCR oligomer, but that this requires the presence and activity of the Src family kinase (SFK) Lyn. We have also shown that monovalent Fab fragments of anti‐BCR antibodies can open the BCR oligomers as long as they directly interact with the antigen‐binding site. We found that monovalent antigen binding opens both the IgM‐BCR and IgD‐BCR, but calcium signalling is only seen in cells expressing IgM‐BCR; this provides a molecular basis for IgM‐ and IgD‐BCR functional segregation.  相似文献   

13.
14.
The development and function of B lymphocytes is regulated by numerous signaling pathways, some emanating from the B‐cell antigen receptor (BCR). The spleen tyrosine kinase (Syk) plays a central role in the activation of the BCR, but less is known about its contribution to the survival and maintenance of mature B cells. We generated mice with an inducible and B‐cell‐specific deletion of the Syk gene and found that a considerable fraction of mature Syk‐negative B cells can survive in the periphery for an extended time. Syk‐negative B cells are defective in BCR, RP105 and CD38 signaling but still respond to an IL‐4, anti‐CD40, CpG or LPS stimulus. Our in vivo experiments show that Syk‐deficient B cells require BAFF receptor and CD19/PI3K signaling for their long‐term survival. These studies also shed a new light on the signals regulating the maintenance of the normal mature murine B‐cell pool.  相似文献   

15.
The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF‐κB pathway, which is important for B‐cell development and function. Here, we describe a mouse model (B‐HOIPΔlinear) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF‐κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B‐HOIPΔlinear mice due to defective activation of the IKK complex; however, B‐cell receptor (BCR)‐mediated activation of the NF‐κB and ERK pathways was unaffected. B‐HOIPΔlinear mice show impaired B1‐cell development and defective antibody responses to thymus‐dependent and thymus‐independent II antigens. Taken together, these data suggest that LUBAC‐mediated linear polyubiquitination is essential for B‐cell development and activation, possibly via canonical NF‐κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.  相似文献   

16.
The B‐cell antigen receptor (BCR), displayed on the plasma membrane of mature B cells of the mammalian immune system, is a multimeric complex consisting of a membrane‐bound immunoglobulin (mIg) noncovalently associated with the Igα/Igβ heterodimer. In this study, we engineered transgenic tobacco plants expressing all four chains of the BCR. ELISA, Western blotting and confocal microscopy demonstrated that the BCR was correctly assembled in plants, predominantly in the plasma membrane, and that the noncovalent link was detergent sensitive. This is the first example of a noncovalently assembled plasma membrane‐retained heterologous receptor in plants. In B cells of the mammalian immune system, following antigen binding to mIg, BCR is internalized and tyrosine residues on Igα and Igβ are phosphorylated activating a signaling cascade through interaction with protein kinases that ultimately leads to the initiation of gene expression. Expression of the BCR may therefore be an important tool for the study of plant endocytosis and the identification of previously unknown plant tyrosine kinases. The specificity and diversity of the antibody repertoire, coupled to the signal transduction capability of the Igα/Igβ heterodimer, also indicates that plants expressing BCR may in future be developed as environmental biosensors.  相似文献   

17.
18.
Roger Brent 《Aging cell》2016,15(1):4-13
Genetically identical organisms in homogeneous environments have different lifespans and healthspans. These differences are often attributed to stochastic events, such as mutations and ‘epimutations’, changes in DNA methylation and chromatin that change gene function and expression. But work in the last 10 years has revealed differences in lifespan‐ and health‐related phenotypes that are not caused by lasting changes in DNA or identified by modifications to DNA or chromatin. This work has demonstrated persistent differences in single‐cell and whole‐organism physiological states operationally defined by values of reporter gene signals in living cells. While some single‐cell states, for example, responses to oxygen deprivation, were defined previously, others, such as a generally heightened ability to make proteins, were, revealed by direct experiment only recently, and are not well understood. Here, we review technical progress that promises to greatly increase the number of these measurable single‐cell physiological variables and measureable states. We discuss concepts that facilitate use of single‐cell measurements to provide insight into physiological states and state transitions. We assert that researchers will use this information to relate cell level physiological readouts to whole‐organism outcomes, to stratify aging populations into groups based on different physiologies, to define biomarkers predictive of outcomes, and to shed light on the molecular processes that bring about different individual physiologies. For these reasons, quantitative study of single‐cell physiological variables and state transitions should provide a valuable complement to genetic and molecular explanations of how organisms age.  相似文献   

19.
20.
Many B‐cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK‐92 cells, a continuously growing NK cell line, showing that anti‐CD19‐CAR (αCD19‐CAR) engineered NK‐92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK‐92 cells. The ‘first generation’ CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc‐tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK‐92 and transduced αCD19‐CAR NK‐92 cells towards CD19 negative targets was found. However, αCD19‐CAR NK‐92 cells specifically and efficiently lysed CD19 expressing B‐precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK‐92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK‐92 should be considered a treatment option for patients with lymphoid malignancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号