首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Odonata are considered among the most endangered freshwater faunal taxa. Their DNA‐based monitoring relies on validated reference data sets that are often lacking or do not cover important biogeographical centres of diversification. This study presents the results of a DNA barcoding campaign on Odonata, based on the standard 658‐bp 5′ end region of the mitochondrial COI gene, involving the collection of 812 specimens (409 of which barcoded) from peninsular Italy and its main islands (328 localities), belonging to all the 88 species (31 Zygoptera and 57 Anisoptera) known from the country. Additional BOLD and GenBank data from Holarctic samples expanded the data set to 1,294 DNA barcodes. A multi‐approach species delimitation analysis involving two distance (OT and ABGD) and four tree‐based (PTP, MPTP, GMYC and bGMYC) methods was used to explore these data. Of the 88 investigated morphospecies, 75 (85%) unequivocally corresponded to distinct molecular operational units, whereas the remaining ones were classified as ‘warnings’ (i.e. showing a mismatch between morphospecies assignment and DNA‐based species delimitation). These results are in contrast with other DNA barcoding studies on Odonata showing up to 95% of identification success. The species causing warnings were grouped into three categories depending on if they showed low, high or mixed genetic divergence patterns. The analysis of haplotype networks revealed unexpected intraspecific complexity at the Italian, Palearctic and Holarctic scale, possibly indicating the occurrence of cryptic species. Overall, this study provides new insights into the taxonomy of odonates and a valuable basis for future DNA and eDNA‐based monitoring studies.  相似文献   

2.
Freshwater shrimp are a rich species group, with a long and problematic taxonomic history attributed to their wide distribution and similar morphological characteristics. Shrimp diversity and species identification are important cornerstones for fisheries management. However, identification based on morphological characteristics is a difficult task for a nonspecialist. Abundant freshwater shrimp species are distributed in the waters of Henan Province, but investigations of freshwater shrimp are limited in this region, especially concerning molecular features. Here, we combined morphology and DNA barcodes to reveal the species diversity of freshwater shrimp in Henan province. A total of 1,200 freshwater shrimp samples were collected from 46 sampling sites, and 222 samples were chosen for further microscopic examination and molecular delimitation. We used tree‐based methods (NJ, ML, and bPTP) and distance‐based methods (estimation of the paired genetic distances and ABGD) to delimit species. The results showed that there were nine morphospecies based on morphological characteristics; all could effectively be defined by molecular methods, among which bPTP and ABGD defined 13 and 8 MOTUs, respectively. The estimation of the paired genetic distances of K2P and the p‐distances had similar results. Mean K2P distances and p‐distances within species were both equal to 1.2%. The maximum intraspecific genetic distances of all species were less than 2%, with the exception of Palaemon modestus and M. maculatum. Various analyses have shown that P. modestus and M. maculatum have a large genetic differentiation, which may indicate the existence of cryptic species. By contrast, DNA barcoding could unambiguously discriminate 13 species and detect cryptic diversity. Our results demonstrate the high efficiency of DNA barcoding to delimit freshwater shrimp diversity and detect the presence of cryptic species.  相似文献   

3.
DNA条形码目前广泛用于昆虫多样性研究。本研究采用DNA条形码(即线粒体细胞色素c氧化酶亚基I基因COI 5′端),通过比较所获分子分类操作单元(Molecular operational taxonomic units,MOTU)的种内遗传距离,探究DNA条形码在亚热带森林(位于我国江西省新岗山)不同昆虫类群中的物种鉴定和界定效用。数据分析中结合数据库比对信息,采用jMOTU、ABGD、bPTP、GMYC 这4种物种界定方法获得MOTU,从而开展种内遗传距离分析。本研究共挑选出479个昆虫样本,获得475条COI序列,经NCBI、BOLD在线数据库比对属于6个目,与形态初步划分一致;物种界定分析获得288个MOTU,其中鳞翅目最多,达85个,膜翅目、双翅目、半翅目、鞘翅目次之,分别为80、74、21和20个,直翅目最少,仅8个。膜翅目和双翅目的种内遗传距离均值及标准偏差较大(膜翅目:0.89%±0.87%;双翅目:0.73%±0.58%),鳞翅目的最小(0.28%±0.20%)。研究表明:不同昆虫类群的种内遗传距离虽然整体在一定范围,但仍然存在一定的差异,因此不能笼统地依靠遗传距离的距离阈值进行物种划分;现有数据库需要补充足够的昆虫物种信息,才能提升物种鉴定效率。本研究丰富了亚热带森林昆虫分子数据库,同时也为进一步探索基于分子分类学开展昆虫多样性研究提供了基础数据和参考。  相似文献   

4.
Identification of taxonomical units underpins most biological endeavours ranging from accurate biodiversity estimates to the effective management of sustainably harvested, protected or endangered species. Successful species identification is now frequently based on a combination of approaches including morphometrics and DNA markers. Sequencing of the mitochondrial COI gene is an established methodology with an international campaign directed at barcoding all fishes. We employed COI sequencing alongside traditional taxonomic identification methods and uncovered instances of deep intraspecific genetic divergences among flathead species. Sixty‐five operational taxonomic units (OTUs) were observed across the Indo‐West Pacific from just 48 currently recognized species. The most comprehensively sampled taxon, Platycephalus indicus, exhibited the highest levels of genetic diversity with eight lineages separated by up to 16.37% genetic distance. Our results clearly indicate a thorough reappraisal of the current taxonomy of P. indicus (and its three junior synonyms) is warranted in conjunction with detailed taxonomic work on the other additional Platycephalidae OTUs detected by DNA barcoding.  相似文献   

5.
Species delimitation is difficult for taxa in which the morphological characters are poorly known because of the rarity of adult morphs or sexes, and in cryptic species. In primitively segmented spiders, family Liphistiidae, males are often unknown, and female genital morphology – usually species‐specific in spiders – exhibits considerable intraspecific variation. Here, we report on an integrative taxonomic study of the liphistiid genus Ganthela Xu & Kuntner, 2015, endemic to south‐east China, where males are only available for two of the seven morphological species (two known and five undescribed). We obtained DNA barcodes (cytochrome c oxidase subunit I gene, COI) for 51 newly collected specimens of six morphological species and analysed them using five species‐delimitation methods: DNA barcoding gap, species delimitation plugin [P ID(Liberal)], automatic barcode gap discovery (ABGD), generalized mixed Yule‐coalescent model (GMYC), and statistical parsimony (SP). Whereas the first three agreed with the morphology, GMYC and SP indicate several additional species. We used the consensus results to delimit and diagnose six Ganthela species, which in addition to the type species Ganthela yundingensis Xu, 2015, completes the revision of the genus. Although multi‐locus phylogenetic approaches may be needed for complex taxonomic delimitations, our results indicate that even single‐locus analyses based on the COI barcodes, if integrated with morphological and geographical data, may provide sufficiently reliable species delimitation. © 2015 The Linnean Society of London  相似文献   

6.
Promoted by the barcoding approach, mitochondrial DNA is more than ever used as a molecular marker to identify species boundaries. Yet, it has been repeatedly argued that it may be poorly suited for this purpose, especially in insects where mitochondria are often associated with invasive intracellular bacteria that may promote their introgression. Here, we inform this debate by assessing how divergent nuclear genomes can be when mitochondrial barcodes indicate very high proximity. To this end, we obtained RAD‐seq data from 92 barcode‐based species‐like units (operational taxonomic units [OTUs]) spanning four insect orders. In 100% of the cases, the observed median nuclear divergence was lower than 2%, a value that was recently estimated as one below which nuclear gene flow is not uncommon. These results suggest that although mitochondria may occasionally leak between species, this process is rare enough in insects to make DNA barcoding a reliable tool for clustering specimens into species‐like units.  相似文献   

7.
The philosophical basis and utility of DNA barcoding have been a subject of numerous debates. While most literature embraces it, some studies continue to question its use in dipterans, butterflies and marine gastropods. Here, we explore the utility of DNA barcoding in identifying spider species that vary in taxonomic affiliation, morphological diagnosibility and geographic distribution. Our first test searched for a ‘barcoding gap’ by comparing intra‐ and interspecific means, medians and overlap in more than 75 000 computed Kimura 2‐parameter (K2P) genetic distances in three families. Our second test compared K2P distances of congeneric species with high vs. low morphological distinctness in 20 genera of 11 families. Our third test explored the effect of enlarging geographical sampling area at a continental scale on genetic variability in DNA barcodes within 20 species of nine families. Our results generally point towards a high utility of DNA barcodes in identifying spider species. However, the size of the barcoding gap strongly depends on taxonomic groups and practices. It is becoming critical to define the barcoding gap statistically more consistently and to document its variation over taxonomic scales. Our results support models of independent patterns of morphological and molecular evolution by showing that DNA barcodes are effective in species identification regardless of their morphological diagnosibility. We also show that DNA barcodes represent an effective tool for identifying spider species over geographic scales, yet their variation contains useful biogeographic information.  相似文献   

8.
Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea.  相似文献   

9.
This study evaluates the utility of DNA barcoding to traditional morphology‐based species identifications for the fish fauna of the north‐eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio ‘nearest‐neighbour distance/maximum intraspecific divergence’ was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative.  相似文献   

10.
We tested the performance of DNA barcoding in Acridoidea and attempted to solve species boundary delimitation problems in selected groups using COI barcodes. Three analysis methods were applied to reconstruct the phylogeny. K2P distances were used to assess the overlap range between intraspecific variation and interspecific divergence. “Best match (BM)”, “best close match (BCM)”, “all species barcodes (ASB)” and “back-propagation neural networks (BP-based method)” were utilized to test the success rate of species identification. Phylogenetic species concept and network analysis were employed to delimitate the species boundary in eight selected species groups. The results demonstrated that the COI barcode region performed better in phylogenetic reconstruction at genus and species levels than at higher-levels, but showed a little improvement in resolving the higher-level relationships when the third base data or both first and third base data were excluded. Most overlaps and incorrect identifications may be due to imperfect taxonomy, indicating the critical role of taxonomic revision in DNA barcoding study. Species boundary delimitation confirmed the presence of oversplitting in six species groups and suggested that each group should be treated as a single species.  相似文献   

11.
DNA barcoding is becoming an increasingly popular means to identify species. The obscure discrimination in the genus Pterygiella calls into question the re-assessment of the criterion for species delimitation. We collected 20 individuals, representing all five described species of this genus in its distributional range. The aim was to use three proposed barcode DNA regions (rbcL, matK, and ITS) to diagnose Pterygiella species, and examine which barcode is more suitable for discerning the congeneric and related species. The results showed that the core barcodes matK and rbcL were comparatively less effective. However, the ITS region, especially ITS-1and ITS-2, successfully identified all species in the genus. Furthermore, the secondary structure of ITS-2 RNA, especially compensatory base changes, appears complementary to classical primary sequence analysis for DNA barcoding.  相似文献   

12.
DNA barcoding is becoming an increasingly popular means to identify species. The obscure discrimination in the genus Pterygiella calls into question the re-assessment of the criterion for species delimitation. We collected 20 individuals, representing all five described species of this genus in its distributional range. The aim was to use three proposed barcode DNA regions (rbcL, matK, and ITS) to diagnose Pterygiella species, and examine which barcode is more suitable for discerning the congeneric and related species. The results showed that the core barcodes matK and rbcL were comparatively less effective. However, the ITS region, especially ITS-1 and ITS-2, successfully identified all species in the genus. Furthermore, the secondary structure of ITS-2 RNA, especially compensatory base changes, appears complementary to classical primary sequence analysis for DNA barcoding.  相似文献   

13.
Abstract Four DNA barcoding loci, chloroplast loci rbcL, matK, trnH‐psbA, and nuclear locus internal transcribed spacer (ITS), were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P‐distance, Wilcoxon signed rank test, and tree‐based analyses. This study included 186 individuals from 89 populations representing 30 species. For all individuals, single locus markers showed high levels of sequencing universality but were ineffective for species resolvability. Polymerase chain reaction amplification and sequencing were successful for all four loci. Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH‐psbA. A combination of matK and ITS was the most efficient DNA barcode among all studied regions, however, they do not represent an appropriate candidate barcode for Chinese Gaultheria, by which only 11 out of 30 species can be separated. Loci rbcL, matK, and trnH‐psbA, which were recently proposed as universal plant barcodes, have a very poor capacity for species separation for Chinese Gaultheria. DNA barcodes may be reliable tools to identify the evolutionary units of this group, so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

14.
Four DNA barcoding loci,chloroplast loci rbcL,matK,trnH-psbA,and nuclear locus internal transcribed spacer (ITS),were tested for the accurate discrimination of the Chinese species of Gaultheria by using intraspecific and interspecific pairwise P-distance,Wilcoxon signed rank test,and tree-based analyses.This study included 186 individuals from 89 populations representing 30 species.For all individuals,single locus markers showed high levels of sequencing universality but were ineffective for species resolvability.Polymerase chain reaction amplification and sequencing were successful for all four loci.Both ITS and matK showed significantly higher levels of interspecific species delimitation than rbcL and trnH-psbA.A combination ofmatK and ITS was the most efficient DNA barcode among all studied regions,however,they do not represent an appropriate candidate barcode for Chinese Gaultheria,by which only 11 out of 30 species can be separated.Loci rbcL,matK,and trnH-psbA,which were recently proposed as universal plant barcodes,have a very poor capacity for species separation for Chinese Gaultheria.DNA barcodes may be reliable tools to identify the evolutionary units of this group,so further studies are needed to develop more efficient DNA barcodes for Gaultheria and other genera with complicated evolutionary histories.  相似文献   

15.
DNA barcoding has greatly accelerated the pace of specimen identification to the species level, as well as species delineation. Whereas the application of DNA barcoding to the matching of unknown specimens to known species is straightforward, its use for species delimitation is more controversial, as species discovery hinges critically on present levels of haplotype diversity, as well as patterning of standing genetic variation that exists within and between species. Typical sample sizes for molecular biodiversity assessment using DNA barcodes range from 5 to 10 individuals per species. However, required levels that are necessary to fully gauge haplotype variation at the species level are presumed to be strongly taxon‐specific. Importantly, little attention has been paid to determining appropriate specimen sample sizes that are necessary to reveal the majority of intraspecific haplotype variation within any one species. In this paper, we present a brief outline of the current literature and methods on intraspecific sample size estimation for the assessment of COI DNA barcode haplotype sampling completeness. The importance of adequate sample sizes for studies of molecular biodiversity is stressed, with application to a variety of metazoan taxa, through reviewing foundational statistical and population genetic models, with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, promising avenues for further research in this area are highlighted.  相似文献   

16.
The Coral Triangle (CT), a region spanning across Indonesia and Philippines, is home to about 4,350 marine fish species and is among the world's most emblematic regions in terms of conservation. Threatened by overfishing and oceans warming, the CT fisheries have faced drastic declines over the last decades. Usually monitored through a biomass‐based approach, fisheries trends have rarely been characterized at the species level due to the high number of taxa involved and the difficulty to accurately and routinely identify individuals to the species level. Biomass, however, is a poor proxy of species richness, and automated methods of species identification are required to move beyond biomass‐based approaches. Recent meta‐analyses have demonstrated that species richness peaks at intermediary levels of biomass. Consequently, preserving biomass is not equal to preserving biodiversity. We present the results of a survey to estimate the shore fish diversity retailed at the harbor of Ambon Island, an island located at the center of the CT that display exceptionally high biomass despite high levels of threat, while building a DNA barcode reference library of CT shore fishes targeted by artisanal fisheries. We sampled 1,187 specimens and successfully barcoded 696 of the 760 selected specimens that represent 202 species. Our results show that DNA barcodes were effective in capturing species boundaries for 96% of the species examined, which opens new perspectives for the routine monitoring of the CT fisheries.  相似文献   

17.
DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654‐bp‐long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2‐parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour‐joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries.  相似文献   

18.
DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, covering 70% of the German pseudoscorpion fauna (35 out of 50 species). For 21 species, we provide the first publicly available COI barcodes, including the rare Anthrenochernes stellae Lohmander, a species protected by the FFH Habitats Directive. The pattern of intraspecific COI variation and interspecific COI variation (i.e., presence of a barcode gap) generally allows application of the DNA barcoding approach, but revision of current taxonomic designations is indicated in several taxa. Sequences of 36 morphospecies were assigned to 74 BINs (barcode index numbers). This unusually high number of intraspecific BINs can be explained by the presence of overlooked cryptic species and by the accelerated substitution rate in the mitochondrial genome of pseudoscorpions, as known from previous studies. Therefore, BINs may not be an appropriate proxy for species numbers in pseudoscorpions, while partitions built with the ASAP algorithm (Assemble Species by Automatic Partitioning) correspond well with putative species. ASAP delineated 51 taxonomic units from our data, an increase of 42% compared with the present taxonomy. The Neobisium carcionoides complex, currently considered a polymorphic species, represents an outstanding example of cryptic diversity: 154 sequences from our dataset were allocated to 23 BINs and 12 ASAP units.  相似文献   

19.
Species discovery through large‐scale sampling of mitochondrial diversity, as advocated under DNA barcoding, has been widely criticized. Two of the primary weaknesses of this approach, the use of a single gene marker for species delineation and the possible co‐amplification of nuclear pseudogenes, can be circumvented through incorporation of multiple data sources. Here I show that for taxonomic groups with poorly characterized systematics, large‐scale genetic screening using a mitochondrial DNA marker can be a very effective approach to species discovery. Global sampling (120 locations) of 1295 individuals of 22 described species of eucalanid copepods identified 15 novel evolutionarily significant units (ESUs) within this marine holoplanktonic family. Species limits were tested under reciprocal monophyly at the mitochondrial (mt) gene 16S rRNA, and 13 of 15 lineages were reciprocally monophyletic under three phylogenetic inference methods. Five of these mitochondrial ESUs also received moderate support for reciprocal monophyly at the independently‐inherited nuclear gene, internal transcribed spacer 2 (ITS2). Additional support for the utility of mt DNA as a proxy for species boundaries in this taxon is discussed, including results from related morphological and biogeographic studies. Minimal overlap of intra‐ESU and inter‐ESU 16S rRNA genetic distances was observed, suggesting that this mt marker performs well for species discovery via molecular screening. Sampling coverage required for the discovery of new ESUs was found to be in the range of >50 individuals/species, well above the sampling intensity of most current DNA Barcoding studies. Large‐scale genetic screening can provide critical first data on the presence of cryptic species, and should be used as an approach to generate systematic hypotheses in groups with incomplete taxonomies.  相似文献   

20.
DNA barcodes are widely used in taxonomy, systematics, species identification, food safety, and forensic science. Most of the conventional DNA barcode sequences contain the whole information of a given barcoding gene. Most of the sequence information does not vary and is uninformative for a given group of taxa within a monophylum. We suggest here a method that reduces the amount of noninformative nucleotides in a given barcoding sequence of a major taxon, like the prokaryotes, or eukaryotic animals, plants, or fungi. The actual differences in genetic sequences, called single nucleotide polymorphism (SNP) genotyping, provide a tool for developing a rapid, reliable, and high‐throughput assay for the discrimination between known species. Here, we investigated SNPs as robust markers of genetic variation for identifying different pigeon species based on available cytochrome c oxidase I (COI) data. We propose here a decision tree‐based SNP barcoding (DTSB) algorithm where SNP patterns are selected from the DNA barcoding sequence of several evolutionarily related species in order to identify a single species with pigeons as an example. This approach can make use of any established barcoding system. We here firstly used as an example the mitochondrial gene COI information of 17 pigeon species (Columbidae, Aves) using DTSB after sequence trimming and alignment. SNPs were chosen which followed the rule of decision tree and species‐specific SNP barcodes. The shortest barcode of about 11 bp was then generated for discriminating 17 pigeon species using the DTSB method. This method provides a sequence alignment and tree decision approach to parsimoniously assign a unique and shortest SNP barcode for any known species of a chosen monophyletic taxon where a barcoding sequence is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号