首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant cells can exhibit highly complex nuclear organization. Through dye-labeling experiments in untransformed onion epidermal and tobacco culture cells and through the expression of green fluorescent protein targeted to either the nucleus or the lumen of the endoplasmic reticulum/nuclear envelope in these cells, we have visualized deep grooves and invaginations into the large nuclei of these cells. In onion, these structures, which are similar to invaginations seen in some animal cells, form tubular or planelike infoldings of the nuclear envelope. Both grooves and invaginations are stable structures, and both have cytoplasmic cores containing actin bundles that can support cytoplasmic streaming. In dividing tobacco cells, invaginations seem to form during cell division, possibly from strands of the endoplasmic reticulum trapped in the reforming nucleus. The substantial increase in nuclear surface area resulting from these grooves and invaginations, their apparent preference for association with nucleoli, and the presence in them of actin bundles that support vesicle motility suggest that the structures might function both in mRNA export from the nucleus and in protein import from the cytoplasm to the nucleus.  相似文献   

2.
3.
The constitutive transport element (CTE) of the simian type D retroviruses overcomes nuclear retention and allows nuclear export of unspliced viral RNAs by recruiting TAP, a host factor which is thought to be required for export of cellular mRNAs. In this report, we show that the first 372 amino acid residues of TAP, comprising a stretch of leucine-rich repeats, are both necessary and sufficient for binding to the CTE RNA and promoting its export to the cytoplasm. Moreover, like the full-length protein, this domain migrates to the cytoplasm upon nuclear co-injection with the CTE RNA. Together, these results indicate that the CTE-binding domain includes the signals for nuclear export. We also describe a derivative of TAP that bears a triple amino acid substitution within the CTE-binding domain and substantially reduces the export of mRNAs from the nucleus. This provides further evidence for a role for TAP in this process. Thus, the CTE-binding domain of TAP defines a novel RNA-binding motif which has dual functions, both recognizing the CTE RNA and interacting with other components of the nuclear transport machinery.  相似文献   

4.
5.
6.
Many long noncoding RNAs (lncRNAs) are constrained to the nucleus to exert their functions. However, commonly used vectors that were designed to express mRNAs have not been optimized for the study of nuclear RNAs. We reported recently that sno-lncRNAs are not capped or polyadenylated but rather are terminated on each end by snoRNAs and their associated proteins. These RNAs are processed from introns and are strictly confined to the nucleus. Here we have used these features to design expression vectors that can stably express virtually any sequence of interest and constrain its accumulation to the nucleus. Further, these RNAs appear to retain normal nuclear associations and function. SnoVectors should be useful in conditions where nuclear RNA function is studied or where export to the cytoplasm needs to be avoided.  相似文献   

7.
The presence of the nuclear envelope necessitates the movement of proteins and RNAs between the nucleus and the cytoplasm. Elaborate cellular machinery exists to promote the nuclear transport of macromolecules. Recent advances in the field have illuminated our comprehension of both nuclear import and export as powerful means of gene regulation. As our appreciation of the importance of the process has grown, its study has matured, moving beyond the single cell to the entire organism. This review discusses basic mechanisms and regulation of protein, mRNA, and ribosome export with an emphasis on developmental examples.  相似文献   

8.
Pre-mRNA processing factors are required for nuclear export   总被引:9,自引:3,他引:6  
  相似文献   

9.
K Str?sser  E Hurt 《FEBS letters》1999,452(1-2):77-81
Eukaryotic cells massively exchange macromolecules (proteins and RNAs) between the nucleus and cytoplasm through the nuclear pore complexes. Whereas a mechanistic picture emerges of how proteins are imported into and exported from the nucleus, less is known about nuclear exit of the different classes of RNAs. However, the yeast Saccharomyces cerevisiae offers an experimental system to study nuclear RNA export in vivo and thus to genetically dissect the different RNA export machineries. In this review, we summarize our current knowledge and recent progress in identifying components involved in nuclear RNA export in yeast.  相似文献   

10.
Hybridisation of cDNA probes for abundant and rare polysomal polyadenylated RNAs with polyadenylated and non-polyadenylated nuclear RNA from Friend cells indicated that the abundant polysomal polyadenylated RNA sequences were present at a higher concentration in the nucleus than rare polysomal sequences, but at a reduced range of concentrations. The ratio of the concentrations of abundant and rare sequences was about 3 in non-polyadenylated nuclear RNA, 9 in polyadenylated nuclear RNA and 13 in polysomal polyadenylated RNA. This suggests that polyadenylation may play a role in the quantitative selection of sequences for transport to the cytoplasm. Polyadenylation cannot be the only signal for transport, since a highly complex population of nucleus-confined polyadenylated molecules exists, each of which is present on average at less than one copy per cell.  相似文献   

11.
12.
Controlling proper RNA pool for nuclear export is important for accurate gene expression. ZFC3H1 is a key controller that not only facilitates nuclear exosomal degradation, but also retains its bound polyadenylated RNAs in the nucleus upon exosome inactivation. However, how ZFC3H1 retains RNAs and how its roles in RNA retention and degradation are related remain largely unclear. Here, we found that upon degradation inhibition, ZFC3H1 forms nuclear condensates to prevent RNA trafficking to nuclear speckles (NSs) where many RNAs gain export competence. Systematic mapping of ZFC3H1 revealed that it utilizes distinct domains for condensation and RNA degradation. Interestingly, ZFC3H1 condensation activity is required for preventing RNA trafficking to NSs, but not for RNA degradation. Considering that no apparent ZFC3H1 condensates are formed in normal cells, our study suggests that nuclear RNA degradation and retention are two independent mechanisms with different preference for controlling proper export RNA pool—degradation is preferred in normal cells, and condensation retention is activated upon degradation inhibition.  相似文献   

13.
Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA   总被引:14,自引:0,他引:14  
Huang Y  Steitz JA 《Molecular cell》2001,7(4):899-905
We have uncovered a novel function for two members of the SR protein family in mRNA export. Using UV cross-linking, transient transfection, and Xenopus oocyte microinjection, we find that the nucleocytoplasmic shuttling proteins SRp20 and 9G8 interact specifically with a 22-nt RNA element from the histone H2a gene to promote the export of intronless RNAs in both mammalian cells and Xenopus oocytes. Antibodies to SRp20 or 9G8 eliminate RNA binding and significantly inhibit the export of RNAs carrying the element from oocyte nuclei. Our observation that SRp20 and 9G8 can be UV cross-linked to polyadenylated RNA in both the nucleus and cytoplasm of HeLa cells suggests a more general role for these SR proteins in mRNA export.  相似文献   

14.
The chloroplasts of Vacuolaria virescens Cienkowsky are present in large numbers between the cell membrane and the layer of cytoplasm surrounding the nucleus; they are disc-shaped structures ca. 3–4 μM long by 2–3 μM wide. Chloroplast bands consist of 3 opposed thylakoids with adjacent bands frequently interconnected. External to the girdle band is a chloroplast envelope separated from the cytoplasm by endoplasmic reticulum; there is no immediately apparent continuity between this endoplasmic reticulum and the nuclear envelope. Small electron-dense spheres in the chloroplast stroma are thought to be lipid food reserve. Eyespots and pyrenoids are absent.  相似文献   

15.
A double lipid bilayer separating the nucleus from the cytoplasm, termed the nuclear envelope, is a defining feature of eukaryotes. Nucleocytoplasmic transport of macromolecules through the nuclear pores enables fine-tuned regulation of biologic processes. All mature mRNAs are delivered to the cytoplasm from the nucleus via an mRNA export pathway. Much work has been done in yeast and animals to study the machinery of mRNA export. However, until recently, research on plant mRNA export has been quite limited. Genetic, bioinformatic, and biochemical investigations have expanded our understanding of the mRNA export process in plants. Here, we review recent progress that has been made elucidating the components of the mRNA export pathway in plants. MOS3 (MODIFIER OF SNC1, 3) /AtNup96 and AtNup160 are both components of the highly conserved Nup107–160 nucleoporin complex and were shown to play key roles in mRNA export. MOS11 (MODIFIER OF SNC1, 11), which is homologous to the RNA helicase enhancer CIP29 in human, was recently found to be involved in the same pathway as MOS3. A DEAD Box RNA helicase, LOS4 (low expression of osmotically responsive genes 4) was also found to play a role in the mRNA export process, putatively by carrying mRNA molecules through the nuclear envelope. Recently, a protein complex homologous to the yeast TREX-2 complex was also found to play important roles in mRNA export in plants. It appears that most players in the mRNA export pathway are highly conserved among plants, yeast and animals.  相似文献   

16.
17.
Dbp5 is the only member of the DExH/D box family of RNA helicases that is directly implicated in the export of messenger RNAs from the nucleus of yeast and vertebrate cells. Dbp5 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore complex (NPC). In an attempt to identify proteins present in a highly enriched NPC fraction, two other helicases were detected: RNA helicase A (RHA) and UAP56. This suggested a role for these proteins in nuclear transport. Contrary to expectation, we show that the Drosophila homolog of Dbp5 is not essential for mRNA export in cultured Schneider cells. In contrast, depletion of HEL, the Drosophila homolog of UAP56, inhibits growth and results in a robust accumulation of polyadenylated RNAs within the nucleus. Consequently, incorporation of [35S]methionine into newly synthesized proteins is inhibited. This inhibition affects the expression of both heat-shock and non-heat-shock mRNAs, as well as intron-containing and intronless mRNAs. In HeLa nuclear extracts, UAP56 preferentially, but not exclusively, associates with spliced mRNAs carrying the exon junction complex (EJC). We conclude that HEL is essential for the export of bulk mRNA in Drosophila. The association of human UAP56 with spliced mRNAs suggests that this protein might provide a functional link between splicing and export.  相似文献   

18.
19.
20.
Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export.   总被引:9,自引:0,他引:9  
The DBP5 gene encodes a putative RNA helicase of unknown function in the yeast Saccharomyces cerevisiae. It is shown here that Dbp5p is an ATP-dependent RNA helicase required for polyadenylated [poly(A)+] RNA export. Surprisingly, Dbp5p is present predominantly, if not exclusively, in the cytoplasm, and is highly enriched around the nuclear envelope. This observation raises the possibility that Dbp5p may play a role in unloading or remodeling messenger RNA particles (mRNPs) upon arrival in the cytoplasm and in coupling mRNP export and translation. The functions of Dbp5p are likely to be conserved, since its potential homologues can be found in a variety of eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号