首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During 2010–14 surveys in the major sesame growing areas of Fars, Yazd and Isfahan provinces (Iran), genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody were studied. Virtual RFLP, phylogenetic, and DNA homology analyses of partial 16S ribosomal sequences of phytoplasma strains associated with symptomatic plants revealed the presence of phytoplasmas referable to three ribosomal subgroups, 16SrII-D, 16SrVI-A, and 16SrIX-C. The same analyses using 16S rDNA sequences from sesame phyllody-associated phytoplasmas retrieved from GenBank database showed the presence of phytoplasmas clustering with strains in the same subgroups in other Iranian provinces including Bushehr and Khorasan Razavi. Circulifer haematoceps and Orosius albicinctus, known vectors of the disease in Iran, were tested for transmission of the strains identified in this study. C. haematoceps transmitted 16SrII-D, 16SrVI-A, and 16SrIX-C phytoplasmas, while O. albicinctus only transmitted 16SrII-D strains. Based on the results of the present study and considering the reported presence of phytoplasmas belonging to the same ribosomal subgroups in other crops, sesame fields probably play an important role in the epidemiology of other diseases associated with these phytoplasmas in Iran.  相似文献   

2.
White clover plants showing little leaf and leaf reddening symptoms were observed in Isfahan Province in central Iran. Restriction fragment length polymorphism analyses of nested PCR‐amplified fragments from Iranian clover little leaf phytoplasma isolates and representative phytoplasmas from other phytoplasma groups using AluI, CfoI, KpnI and RsaI restriction enzymes indicated that the clover phytoplasma isolates are related to the peanut WB group. Sequence analyses of partial 16S rRNA fragments showed that Iranian clover little leaf phytoplasma has 99% similarity with soybean witches'‐broom phytoplasma, a member of the peanut WB (16SrII) phytoplasma group. This is the first report of clover infection with a phytoplasma related to the 16SrII group.  相似文献   

3.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

4.
The Distribution of Phytoplasmas in Myanmar   总被引:1,自引:0,他引:1  
Phytoplasma‐infected plants with symptoms of general yellowing, stunting, little leaves, white leaves, virescence, phyllody and witches’ broom growth of axillary shoots were collected from various plant species in Myanmar during 2010 and 2011. Restriction fragment length polymorphism (RFLP), sequence analysis of the PCR‐amplified 16S ribosomal RNA gene and phylogenetic analyses were used to identify and classify the phytoplasmas. Based on RFLP and sequence analyses, 13 isolates were identified and classified into one subgroup of 16SrI‐B, two subgroups of 16SrII‐A and 16SrII‐C, and one of 16SrXI group phytoplasmas. Phylogenetic analyses also supported the relationship of Myanmar isolates with the three 16Sr groups. This study showed that at least three 16Sr groups exist and 16SrII group phytoplasmas are widely distributed in Myanmar.  相似文献   

5.
During 2015–2016, wooden and herbaceous plants growing in parks, boulevards, fields, gardens and forests in Khuzestan province, southwestern Iran, were visually inspected for symptoms resembling phytoplasma. Fifty‐one symptomatic samples from nine different species and one symptomless sample from each plant were collected. Leaf midribs, petioles and the parts of stem cambium were separated and freeze‐dried. Total DNA was extracted using CTAB‐based method and tested for phytoplasma using a nested PCR assay. The expected size amplicons of 16S rDNA were sequenced and compared to those of reference phytoplasmas by BLASTn search and phylogenetic analysis. The consensus 16S rDNA sequence of the detected phytoplasma in narrow cattail related to reference phytoplasma group 16SrVI, “Candidatus Phytoplasma trifolii” while in the other plants were related to reference phytoplasma subgroup 16SrII–D, “Candidatus Phytoplasma aurantifolia.” All isolates showed 98%–99% sequence identity to members of their reference groups. To our knowledge, this is the first report of “Candidatus Phytoplasma aurantifolia”‐related strains infecting the plants of Acacia salicina, Alternanthera ficoidea, Melaleuca citrine, Citrus aurantium throughout the world and Celosia christata in Iran. Furthermore, this study is the first to report the association of a “Candidatus Phytoplasma trifolii”‐related strain with Typha angustifolia worldwide.  相似文献   

6.
Phytoplasmas were detected based on nested PCR of the F2nR2 region of the 16S rDNA from Neoaliturus haematoceps (Mulsant and Rey) (Family: Cicadellidae). A total of 65 insect samples collected from sesame fields in Antalya, Turkey, during 2012–2014 were tested for phytoplasma detection. Phytoplasmas detected in fifteen samples showed an amplicon approximately 1250 bp in size using the universal primers of P1/P7 and R16F2n/R16R2. Identification of the phytoplasmas by sequence analysis revealed three different 16S rDNA phytoplasma groups: the peanut witches’‐broom, group II; clover proliferation, group VI; and pigeon pea witches’‐broom, group IX. The molecular characterization of subgroups was determined by sequence analysis and PCR‐RFLP using the restriction enzymes RsaI and TaqI. Restriction profiles of the subgroups were also confirmed using the iPhyclassifier program. BLAST and PCR‐RFLP analyses classified the subgroups as II‐D, VI‐A and IX‐C. This is the first report of molecular detection of three 16S rDNA subgroups of phytoplasmas, II‐D, VI‐A and IX‐C, from Nhaematoceps in Turkey. This study also supports earlier studies of sesame phyllody phytoplasmas by Nhaematoceps.  相似文献   

7.
In 2002, garden beet witches’ broom (GBWB) phytoplasma was detected for the first time in garden beet plants (Beta vulgaris L. ssp. esculenta) in Yazd, Iran. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphic (RFLP) analysis of PCR‐amplified phytoplasma 16S rDNA were employed for the detection and identification of the phytoplasma associated with garden beet. A phytoplasma belonging to subgroup 16SrII‐E, in the peanut witches’ broom group (16SrII), was detected in infected plants. Asymptomatic plant samples and the negative control yielded no amplification. The result of analysis of the nucleotide sequence of a 1428 bp fragment of 16S rDNA gene from GBWB phytoplasma (GenBank accession number DQ302722 ) was basically consistent with the classification based on RFLP analysis, in which GBWB phytoplasma clustered with phytoplasmas of the 16SrII‐E subgroup. A search for a natural phytoplasma vector was conducted in Yazd in 2004, in an area where garden beet crops had been affected since 2002. The associated phytoplasma was detected in one leafhopper species, Orosius albicinctus, commonly present in this region. The leafhopper O. albicinctus was used in transmission tests to determine its vector status for the phytoplasma associated with GBWB. Two of eight plants that had been fed on by O. albicinctus, showed mild symptoms of GBWB including stunting and reddening of midveins. A phytoplasma was detected in the two symptomatic test plants by PCR using universal primers and it was identified by RFLP as the GBWB phytoplasma. This finding suggests O. albicinctus is a vector of the GBWB phytoplasma.  相似文献   

8.
Given the potential for urban green spaces to provide fresh and healthy environments for humans, exploring the issues that threaten plants in these places is crucial. Phytoplasma-related symptoms were encountered on some plants in urban green spaces in the province of Kerman, southeastern Iran, between 2017 and 2019. Affected periwinkles and petunias exhibited phytoplasma disease symptoms, including virescence, phyllody, and witches'-broom. However, ball or disc-like shoot proliferation symptoms were noticed on the trunks and branches of pine trees. PCR was performed with phytoplasma-detecting universal primers, targetting and amplifying the 16S rRNA gene, and determining whether phytoplasmas are implicated in the symptomatic plants. The infection of the symptomatic plants was confirmed using nested-PCR amplification of expected DNA sizes for phytoplasmas. No product, however, was amplified from sampled symptomless plants. The sequencing of nested-PCR products was performed to obtain sequences encasing the standard F2nR2 fragments. The resulted sequences were submitted to iPhyClassifier, the universal phytoplasma classification platform, for the taxonomic assignment of the found phytoplasmas compared with previously identified ‘Candidatus Phytoplasma’ species, groups, and subgroups. The results revealed that phytoplasma strains related to the species ‘Ca. P. trifolii’ (16SrVI-A subgroup) infect periwinkles and pines. However, strains from the species ‘Ca. P. aurantifolia’ (16SrII-D subgroup) and ‘Ca. P. phoenicium’ (16SrIX-C subgroup) were found in petunias and periwinkles, respectively. To the best of our knowledge, phytoplasmas from the 16SrVI-A and 16SrII-D subgroups are the first reported to infect these plants in Kerman province, while a related strain from the subgroup 16SrIX-C is the first recorded to infect periwinkles in Iran and the second in the world.  相似文献   

9.

Background

Crotalaria aegyptiaca, a low shrub is commonly observed in the sandy soils of wadis desert and is found throughout all regions in Oman. A survey for phytoplasma diseases was conducted. During a survey in a wild area in the northern regions of Oman in 2015, typical symptoms of phytoplasma infection were observed on C. aegyptiaca plants. The infected plants showed an excessive proliferation of their shoots and small leaves.

Results

The presence of phytoplasma in the phloem tissue of symptomatic C. aegyptiaca leaf samples was confirmed by using Transmission Electron Microscopy (TEM). In addition the extracted DNA from symptomatic C. aegyptiaca leaf samples and Orosius sp. leafhoppers were tested by PCR using phytoplasma specific primers for the 16S rDNA, secA, tuf and imp, and SAP11 genes. The PCR amplifications from all samples yielded the expected products, but not from asymptomatic plant samples. Sequence similarity and phylogenetic tree analyses of four genes (16S rDNA, secA, tuf and imp) showed that Crotalaria witches’ broom phytoplasmas from Oman is placed with the clade of Peanut WB (16SrII) close to Fava bean phyllody (16SrII-C), Cotton phyllody and phytoplasmas (16SrII-F), and Candidatus Phytoplasma aurantifolia’ (16SrII-B). However, the Crotalaria’s phytoplasma was in a separate sub-clade from all the other phytoplasmas belonging to Peanut WB group. The combination of specific primers for the SAP11 gene of 16SrII-A, ?B, and -D subgroup pytoplasmas were tested against Crotalaria witches’ broom phytoplasmas and no PCR product was amplified, which suggests that the SAP11 of Crotalaria phytoplasma is different from the SAP11 of the other phytoplasmas.

Conclusion

We propose to assign the Crotalaria witches’ broom from Oman in a new lineage 16SrII-W subgroup depending on the sequences analysis of 16S rRNA, secA, imp, tuf, and SAP11 genes. To our knowledge, this is the first report of phytoplasmas of the 16SrII group infecting C. aegyptiaca worldwide.
  相似文献   

10.
During several surveys in extensive areas in central Iran, apple trees showing phytoplasma diseases symptoms were observed. PCR tests using phytoplasma universal primer pairs P1A/P7A followed by R16F2n/R16R2 confirmed the association of phytoplasmas with symptomatic apple trees. Nested PCR using 16SrX group‐specific primer pair R16(X)F1/R1 and aster yellows group‐specific primer pairs rp(I)F1A/rp(I)R1A and fTufAy/rTufAy indicated that apple phytoplasmas in these regions did not belong to the apple proliferation group, whereas aster yellows group‐related phytoplasmas caused disease on some trees. Restriction fragment length polymorphism (RFLP) analyses using four restriction enzymes (HhaI, HpaII, HaeIII and RsaI) and sequence analyses of partial 16S rRNA and rp genes demonstrated that apple phytoplasma isolates in the centre of Iran are related to ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma aurantifolia’. This is the first report of apples infected with ‘Ca. Phytoplasma asteris’ in Iran and the first record from association of ‘Ca. Phytoplasma aurantifolia’ with apples worldwide.  相似文献   

11.
A new cauliflower disease characterised by the formation of leaf‐like inflorescences and malformed flowers occurred in a seed production field located in Yunnan, a southwest province of China. Detection of phytoplasma‐characteristic 16S rRNA gene sequences in DNA samples from diseased plants linked the cauliflower disease to phytoplasmal infection. Results from phylogenetic and virtual restriction fragment length polymorphism analyses of the 16S rRNA gene sequence indicated that the cauliflower‐infecting agent is a ‘Candidatus Phytoplasma aurantifolia’‐related strain and is a new member of the peanut witches'‐broom phytoplasma group, subgroup A (16SrII‐A). Multilocus genotyping showed close genetic relationship between this cauliflower phytoplasma and a broad host range phytoplasma lineage found only in East Asia thus far. Molecular markers present in the secY and rp loci distinguished this phytoplasma from other members of the subgroup 16SrII‐A.  相似文献   

12.
Phytoplasmas are associated with several plant diseases occurring in Brazil. A phytoplasma of group 16SrIII found in tomato plants with symptoms of big bud was identified by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of 16S rDNA. RFLP patterns using HhaI and RsaI endonucleases were distinct from those exhibited by phytoplasmas representatives of diverse subgroups of group 16SrIII. Nucleotide sequence analyses demonstrated sequence heterogeneity expressed through a few base positions and restriction site among cloned fragments, revealing lineages different from members of currently known subgroups. The detection of lineages within tomato big bud phytoplasma present in Brazil revealed the diversity of representatives of group 16SrIII in tropical ecosystem and confirmed the genetic diversity of phytoplasmas of that group around the world.  相似文献   

13.
Two independent surveys were performed in Peru during February and November 2007 to detect the presence of phytoplasmas within any crops showing symptoms resembling those caused by phytoplasmas. Molecular identifications and characterisations were based on phytoplasma 16S and 23S rRNA genes using nested PCR and terminal restriction fragment length polymorphism (T‐RFLP). The surveys indicated that phytoplasmas were present in most of the locations sampled in Peru in both cultivated crops, including carrots, maize, native potatoes, improved potato, tomato, oats, papaya and coconut, and in other plants such as dandelion and the ornamental Madagascar periwinkle (Catharanthus roseus). Phylogenetic analysis of the sequences confirmed that while most of the isolates belong to the 16SrI aster yellows group, which is ubiquitous throughout other parts of South America, one isolate from potato belongs to the 16SrII peanut witches’ broom group, and one isolate from tomato and one from dandelion belong to the 16SrIII X‐disease group. The use of T‐RFLP was validated for the evaluation of phytoplasma‐affected field samples and provided no evidence for mixed infection of individual plants with more than one phytoplasma isolate. These data represent the first molecular confirmation of the presence of phytoplasmas in a broad range of crops in Peru.  相似文献   

14.
Yellowing of leaf tissue and strongly deformed shoots were observed in common mugwort (Artemisia vulgaris L.) growing in a nature reserve in Southern Poland. Similar foliage chlorosis together with abnormal shoot proliferation was noticed on alder tree (Alnus glutinosa Gaertn.) growing next to the common mugwort. DNA specific fragments coding 16S rRNA and ribosomal proteins (rp) were amplified from mugwort and alder samples using direct and nested PCR (Polymerase Chain Reaction) assays. Phylogenetic relationships inferred from 16S and rps3 genes indicated that strains infecting mugwort and alder were most closely related to phytoplasmas of subgroups 16SrV-C and 16SrV-D. Based on the restriction fragment length polymorphism (RFLP) analysis of the 16S rDNA, the investigated phytoplasma strains were classified to subgroup 16SrV-C. Two sequence variants of the rps3 gene which differed by a single nucleotide were detected in all analysed samples by pairwise analysis of the aligned reads. Taking into account that this single-nucleotide polymorphism (SNP) occurs among 16SrV-C and 16SrV-D related phytoplasmas and that the phytoplasmas have a single copy of rp operon, we concluded that each plant species was infected by two distinct, closely related phytoplasma strains. To the best of our knowledge, this is the first report of group 16SrV-C related phytoplasmas infecting common mugwort worldwide, adding a new host species that is possibly linked to the spread of the alder pathogen in Eastern Europe. Although alder yellows phytoplasma has been frequently found in Europe, this is the first detection of phytoplasmas associated with alder in Poland.  相似文献   

15.
In the year 2010, in a survey in Guangxi Province, China, to detect and characterize phytoplasmas in a huanglongbing (HLB)‐infected grapefruit (Citrus paradisi) orchard, 87 leaf samples with symptoms of blotchy mottle were collected from symptomatic grapefruit trees, and 320 leaf samples from symptomless trees adjacent to the symptomatic trees. Nested polymerase chain reaction (PCR) using universal phytoplasma primer set P1/P7 followed by primer set fU5/rU3 identified 7 (8.0%) positive samples from symptomatic samples but none from symptomless samples. Of the 87 symptomatic samples, 77 (88.5%) were positive for ‘Candidatus Liberibacter asiaticus’ and 5 for both phytoplasma and ‘Ca. L. asiaticus’. Sequence analysis indicated that seven 881‐bp amplicons, amplified by nested phytoplasma primer sets P1/P7 and fU5/rU3, shared 100.0% sequence identity with each other. Genome walking was then performed based on the 881 bp known sequences, and 5111 bp of upstream and downstream sequences were obtained. The total 5992 bp sequences contained a complete rRNA operon, composed of a 16S rRNA gene, a tRNAIle gene, a 23S rRNA gene and a 5S rRNA gene followed by eight tRNA genes. Phylogenetic analysis and virtual restriction fragment length polymorphism analysis confirmed the phytoplasma was a variant (16SrII‐A*) of phytoplasma subgroup 16SrII‐A. As phytoplasmas were only detected in blotchy‐mottle leaves, the 16SrII‐A* phytoplasma identified was related to HLB‐like symptoms.  相似文献   

16.
Alfalfa fields in three western provinces of Iran were surveyed for Peanut stunt virus (PSV) during 2011 and 2012. Forty‐seven of 115 samples tested (41%) were infected with PSV. Phylogenetic analysis using coat protein (CP) gene sequences showed that the Iranian isolates belong to the subgroup II of PSV. Pairwise identity analysis revealed four groups representing four phylogenetic subgroups. PSV strains in subgroups III and IV are closely related to each other, as supported by the lowest nucleotide diversity, high pairwise nucleotide identity and high haplotype diversity as evidence of a recent population expansion after a genetic bottleneck. Using the maximum likelihood method, amino acid 86S in the CP gene of the Iranian PSV isolates was found to be under positive selection, although the likelihood ratio test statistics is not significant. This is the first report of the occurrence and phylogenetic relationships of Iranian PSV isolates in west Iran.  相似文献   

17.
A survey for phytoplasma diseases was conducted in a sweet and sour cherry germplasm collection and in cherry orchards within the Czech Republic during 2014–2015. Phytoplasmas were detected in 21 symptomatic trees. Multiple infections of cherry trees by diverse phytoplasmas of 16SrI and 16SrX groups and 16SrI‐A, 16SrI‐B, 16SrI‐L, 16SrX‐A subgroups were detected by restriction fragment length polymorphism (RFLP). Nevertheless, phylogenetic analysis placed subgroups 16SrI‐B and 16SrI‐L inseparable together onto one branch of phylogenetic tree. This is the first report of subgroups 16SrI‐A and 16SrI‐L in Prunus spp., and subgroup 16SrX‐A in sour cherry trees. Additionally, novel RFLP profiles for 16SrI‐A and 16SrI‐B‐related phytoplasmas were found in cherry samples. Phytoplasmas with these novel profiles belong, however, to their respective 16SrI‐A or 16SrI‐B phylogenetic clades.  相似文献   

18.
G. Babaie    B. Khatabi    H. Bayat    M. Rastgou    A. Hosseini    G. H. Salekdeh 《Journal of Phytopathology》2007,155(6):368-372
During field surveys in 2004, ornamental and weed plants showing symptoms resembling those caused by phytoplasmas were observed in Mahallat (central Iran). These plants were examined for phytoplasma infections by polymerase chain reaction (PCR) assays using universal phytoplasma primers directed to ribosomal DNA (rDNA). All affected plants gave positive results. The detected phytoplasmas were characterized and differentiated through restriction fragment length polymorphism (RFLP) and sequence analysis of PCR‐amplified rDNA. The phytoplasmas detected in diseased Asclepias curassavica and Celosia argentea were identified as members of clover proliferation phytoplasma group (16SrVI group) whereas those from the remaining plants examined proved to be members of aster yellow phytoplasma group (16SrI group) (‘Candidatus Phytoplasma asteris’). In particular, following digestion with AluI, HaeIII and HhaI endonucleases, the phytoplasma detected in Limonium sinuatum showed restriction profiles identical to subgroup 16SrI‐C; phytoplasmas from Gomphocarpus physocarpus, Tanatacetum partenium, Lactuca serriola, Tagetes patula and Coreopsis lanceolata had the same restriction profiles as subgroup 16SrI‐B whereas Catharanthus roseus‐ and Rudbeckia hirta‐infecting phytoplasmas showed restriction patterns of subgroup 16SrI‐A. This is the first report on the occurrence of phytoplasma diseases of ornamental plants in Iran.  相似文献   

19.
The molecular identification and characterization of phytoplasmas from infected grapevines in four locations in Serbia are reported. Phytoplasmas were detected and identified by restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rDNA. Grapevine yellows were associated with three molecularly distinguishable phytoplasmas: Flavescence dorée phytoplasmas (elm yellows group: 16SrV‐C subgroup) were present only in the Župa Aleksandrovac region; Bois noir phytoplasmas (stolbur group: 16SrXII‐A subgroup) were detected in the other surveyed regions; a mixed infection of European stone fruit yellows (apple proliferation group: 16SrX‐B subgroup) and Bois noir phytoplasmas was identified in one sample. A finer molecular characterization by RFLP analysis of rpS3 and SecY genes of Flavescence dorée phytoplasmas from Župa Aleksandrovac confirmed that the Serbian genotype is indistinguishable from a strain from the Veneto region, Italy. Characterization of the tuf gene of Bois noir phytoplasmas showed lack of amplification of samples from Erdevik. HpaII profiles of tuf gene PCR products of samples from Pali and Radmilovac were identical, and were indistinguishable from one of the two profiles produced by samples from Italian grapevines used as reference strains.  相似文献   

20.
Two phytoplasmas closely related to the X‐disease group were associated with China‐tree (Melia azedarach L.) and garlic (Allium sativum L.) decline diseases in Argentina. The present work was aimed at studying their phylogenetic relationship based on molecular characterization of the 16S ribosomal DNA sequences. Phytoplasma DNAs were obtained from naturally infected China‐tree and garlic plants from different geographical isolates. The results from analysis of restriction fragment length polymorphisms and nucleotide sequences of the 16S rDNA showed the affiliation of China‐tree and garlic decline phytoplasmas to the 16SrIII (X‐disease group), subgroups B and J, respectively. Both organisms had high sequence similarities in the 16SrDNA nucleotide sequence with the Chayote witches’ broom phytoplasma from Brazil. The phylogenetic tree, constructed by parsimony analysis, grouped the Garlic decline, China‐tree decline, Chayote witches’ broom and Clover yellow edge phytoplasmas into a cluster separated from the other phytoplasmas of the X‐disease group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号