首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pitcher TE  Neff BD 《Molecular ecology》2006,15(9):2357-2365
The genes of the major histocompatibility complex (MHC) are found in all vertebrates and are an important component of individual fitness through their role in disease and pathogen resistance. These genes are among the most polymorphic in genomes and the mechanism that maintains the diversity has been actively debated with arguments for natural selection centering on either additive or nonadditive genetic effects. Here, we use a quantitative genetics breeding design to examine the genetic effects of MHC class IIB alleles on offspring survivorship in Chinook salmon (Oncorhynchus tshawytscha). We develop a novel genetic algorithm that can be used to assign values to specific alleles or genotypes. We use this genetic algorithm to show simultaneous additive and nonadditive effects of specific MHC class IIB alleles and genotypes on offspring survivorship. The additive effect supports the rare-allele hypothesis as a potential mechanism for maintaining genetic diversity at the MHC. However, contrary to the overdominance hypothesis, the nonadditive effect led to underdominance at one heterozygous genotype, which could instead reduce variability at the MHC. Our algorithm is an advancement over traditional animal models that only partition variance in fitness to additive and nonadditive genetic effects, but do not allocate these effects to specific alleles and genotypes. Additionally, we found evidence of nonrandom segregation during meiosis in females that promotes an MHC allele that is associated with higher survivorship. Such nonrandom segregation could further reduce variability at the MHC and may explain why Chinook salmon has one of the lowest levels of MHC diversity of all vertebrates.  相似文献   

2.
Summary An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.Issued as AECL-8745  相似文献   

3.
We review three methods for estimating the frequency of null alleles at codominant loci (such as microsatellite loci) and present a new maximum likelihood approach. Computer simulations show that the maximum likelihood estimator has a smaller root mean squared error than previous estimators.  相似文献   

4.
The first domain exon of a porcine DRB gene was amplified by the polymerase chain reaction (PCR), and the nucleotide sequence was determined. In a material consisting of 10 unrelated animals, five different alleles were identified, all probably belonging to a single locus designated DRB1. In addition, a non-expressed locus, designated DRBP, was coamplified with DRB1. This pseudogene, containing a single base deletion, also exhibited some variation, but at a very restricted level compared with DRB1. In pairwise comparisons of DRB1 alleles, the number of amino acid substitutions ranged between 6 and 21 out of 83 positions compared.  相似文献   

5.
More than two nucleotide sequences of the second exon of the ELA-DQB region retrieved from a single animal and two different sequences isolated from horses homozygous in the major histocompatibility complex (MHC) region by descent indicated the existence of at least two ELA-DQB loci at the genomic level. New alleles detected by polymerase chain reaction single strand conformation polymorphism (SSCP) and defined by nucleotide sequencing of the second exon of the DQB gene(s) were described. Based on the level of nucleotide sharing, at least two groups of alleles were shown to exist. The newly defined alleles belonged preferentially to one of the groups. However, their specific locus assignment was not possible from the data collected. At least one of these alleles was shown to be transcribed. No frame-shift mutations were identified among the new alleles, although one pseudoallele containing a stop codon was identified at the genomic DNA level.  相似文献   

6.
Three commercial broiler pure lines were evaluated for associations of sire BF2 (major histocompatibility complex class I) alleles with progeny phenotypic traits. Significant BF2 associations with a subset of traits were observed in two lines. The BF2*21 allele was positively associated with antibody titre to infectious bursal disease virus in both lines. Other associations were line-specific.  相似文献   

7.
P. Millot 《Animal genetics》1978,9(2):115-121
Among 11 lymphocyte factors defined in sheep, 9 are the products of multiple alleles at 2 closely linked loci: OLA-A and OLA-B. A tenth factor is the product of a gene at a third locus: OL-X probably on the same chromosome, but in this case very distant from OLA. The last factor is the product of a gene at a fourth locus: OL-Z, independent of OLA-A and B.  相似文献   

8.
F(1) and F(2) populations were generated by crossing two lines of chickens divergently selected from a common founder population for 32 generations for either high or low antibody response 5 days post-injection of a non-pathogenic antigen, sheep red blood cells (SRBCs). The number of loci with major effects on day 5 SRBC titers was estimated to be more than 7 in this population. There was a significant association between MHC haplotype and day 5 antibody titers as well as body weight at sexual maturity. A significant difference between reciprocal F(2) crosses for both 5- and 12-day antibody titers suggests that sex chromosome and/or parent of origin effects on autosomal loci have an important role in immune response. A single marker-trait association analysis on 1024 genetic markers and 128 F(2) individuals detected 11 genomic regions associated with antibody response traits and 17 regions associated with body weight gain. Several of the genomic regions identified as being associated with antibody response have been described previously, while novel regions associated with antibody response were identified on chromosomes 11 and 24. Based on the lack of overlap of the regions associated with body weight and antibody response, we conclude that while these phenotypes are inversely correlated in the selected lines, they are controlled by distinct genetic loci and may be reflective of intense selection pressure on loci affecting the partitioning of nutrients between the immune system and growth pathways.  相似文献   

9.
Cynomolgus macaques have been used widely to build a research model of infectious and chronic diseases, as well as in transplantation studies, where disease susceptibility and/or resistance are associated with the major histocompatibility complex (MHC). To better elucidate polymorphisms and genetic differences in the Mafa‐DRB locus, and facilitate the experimental use of cynomolgus macaques, we used pool screening combined with cloning and direct sequencing of polymerase chain reaction products to characterize MhcMafa‐DRB gene alleles in 153 Vietnamese cynomolgus macaques. We identified 30 Mafa‐DRB alleles belonging to 17 allelic lineages, including four novel sequences that had not been documented in earlier reports. The highest frequency allele was Mafa‐DRB*W27:04, which was present in 7 of 35 (20%) monkeys. The next most frequent alleles were Mafa‐DRB*3:07 and Mafa‐DRB*W7:01, which were detected in 5 of 35 (14.3%) and 4 of 35 (11.4%) of the monkeys, respectively. The high‐frequency alleles in this Vietnamese population may be high priority targets for additional characterization of immune functions. Only the DRB1*03 and DRB1*10 lineages were also present in humans, whereas the remaining alleles were monkey‐specific lineages. We found 25 variable sites by aligning the deduced amino acid sequences of 29 identified alleles. Evolutionary and population analyses based on these sequences showed that human, rhesus, and cynomolgus macaques share several Mhc‐DRB lineages and the shared polymorphisms in the DRB region may be attributable to the existence of interbreeding between rhesus and cynomolgus macaques. This information will promote the understanding of MHC diversity and polymorphism in cynomolgus macaques and increase the value of this species as a model for biomedical research. Am. J. Primatol. 74:958‐966, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Comparisons of genetic differentiation across populations based on different loci can provide insight into the evolutionary patterns acting on various regions of genomes. Here, we develop a program to statistically compare population genetic differentiation statistics (F(ST) or G'(ST) ) calculated from different loci. The program employs a routine that resamples either or both of individuals and loci and calculates a bootstrap confidence interval in the statistics. Resampling individuals is important when fewer than 25 individuals are sampled per population and when confidence intervals are required for individual loci. Resampling loci provides confidence intervals for sets of loci, such as a set presumed to be neutral, but can be anticonservative if fewer than 20 loci are analysed. We demonstrate the program using previously published data on the genetic differentiation at a major histocompatibility complex locus and at microsatellite loci across 10 populations of the guppy (Poecilia reticulata).  相似文献   

11.
In vertebrates, the genes of the major histocompatibility complex (MHC) are among the most debated candidates accounting for co-evolutionary processes of host-parasite interaction at the molecular level. The exceptionally high allelic polymorphism found in MHC loci is believed to be maintained by pathogen-driven selection, mediated either through heterozygous advantage or rare allele advantage (= frequency dependent selection). While investigations under natural conditions are still very rare, studies on humans or mice under laboratory conditions revealed support for both hypotheses. We investigated nematode burden and allelic diversity of a functional important MHC class II gene (DRB exon2) in free-ranging yellow-necked mice (Apodemus flavicollis). Twenty-seven distinct Apfl-DRB alleles were detected in 146 individuals with high levels of amino acid sequence divergence, especially at the antigen binding sites (ABS), indicating selection processes acting on this locus. Heterozygosity had no influence on the infection status (being infected or not), the number of different nematode infections (NNI) or the intensity of infection, measured as the individual faecal egg count (FEC). However, significant associations of specific Apfl-DRB alleles to both nematode susceptibility and resistance were found, for all nematodes as well as in separate analyses of the two most common nematodes. Apodemus flavicollis individuals carrying the alleles Apfl-DRB*5 or Apfl-DRB*15 revealed significantly higher FEC than individuals with other alleles. In contrast, the allele Apfl-DRB*23 showed a significant association to low FEC of the most common nematode. Thus, our results provide evidence for pathogen-driven selection acting through rare allele advantage under natural conditions.  相似文献   

12.
Polymorphism in DQB sequences of the bovine major histocompatibility complex was investigated in 22 British Friesian cattle. The first domain exon was amplified, cloned and sequenced. Eight different sequences were identified, six of which had not been identified previously. The high proportion of novel sequences suggests that additional polymorphisms within the DQB loci remain to be discovered in this breed. One sequence was present in at least 21 of the 22 cattle. This sequence, or a closely related sequence, has also been found in American Holstein Friesian, Swedish Red and White and Japanese Black cattle. The remarkably high sequence conservation suggests that the bovine DQB region may contain a locus with a low level of polymorphism and be more similar to the human DQB region than previously supposed. One sequence with three widely spaced frameshift insertions appeared to be a pseudogene.  相似文献   

13.
Two pairs of sympatric three‐spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers.  相似文献   

14.
Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2-4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages.  相似文献   

15.
Malaria parasites are a major cause of human mortality in tropical countries and a potential threat for wildlife, as witnessed by the malaria-induced extinction of naive Hawaiian avifauna. Identifying resistance mechanisms is therefore crucial both for human health and wildlife conservation. Patterns of malaria resistance are known to be highly polygenic in both humans and mice, with marked contributions attributed to major histocompatibility (Mhc) genes. Here we show that specific Mhc variants are linked to both increased resistance and susceptibility to malaria infection in a wild passerine species, the house sparrow (Passer domesticus). In addition, links between host immunogenetics and resistance to malaria involved population-specific alleles, suggesting local adaptation in this host-parasite interaction. This is the first evidence for a population-specific genetic control of resistance to malaria in a wild species.  相似文献   

16.
A significant portion of plant species are polyploids, with ploidy levels sometimes varying among individuals and/or populations. Current techniques to determine the individual ploidy, e.g., flow cytometry, chromosome counting or genotyping‐by‐sequencing, are often cumbersome. Based on the genotypic probabilities for polysomic inheritance under double‐reduction, we developed a model to estimate allele frequency and infer the ploidy status of individuals from the allelic phenotypes of codominant genetic markers. The allele frequencies are estimated by an expectation‐maximization algorithm in the presence of null alleles, false alleles, negative amplifications and self‐fertilization, and the posterior probabilities are used to assign individuals into different levels of ploidy. The accuracy of this method under different conditions is evaluated. Our methods are freely available in a new software package, ploidyinfer , for use by other researchers which can be downloaded from http://github.com/huangkang1987/ploidyinfer .  相似文献   

17.
Representational difference analysis (RDA) was initially used to identify differences between two inbred lines of chickens, line N and line 15I, on which the Compton mapping reference population is based. RDA was subsequently used to identify marker loci targeted specifically to chicken chromosome 16. Chromosome 16 contains the major histocompatibility complex (MHC), nucleolar organiser region (NOR) and Rfp-Y complex. To generate markers specific for this chromosome a bird was selected from the Compton mapping reference population which had inherited N line alleles for the MHC, NOR and Rfp-Y regions on this chromosome. DNA from this bird was compared with pooled DNA from 16 of its siblings, all of which had inherited line 15I alleles for the MHC, NOR and Rfp-Y regions. Initially amplicons were derived from Bam HI digested samples, RDA products were cloned after the first round of hybridisation and 113 clones were investigated: 45 of these identified Bam HI polymorphisms in this population. Of the 45 polymorphic clones, 17 have been mapped in the reference population so far, and these have identified seven new loci on chromosome 16. Interestingly a group of 16 other loci were linked on chromosome 4. The same birds were also compared by RDA following digestion with Taq I. Again large numbers of clones were generated of which 65 were investigated. Of these 17 clones were polymorphic and of five clones mapped so far three lie on chromosome 16. Two of the loci mapped to chromosome 16 have been used to identify yeast artificial chromosome (YAC) clones (GenBank accession numbers: AF057302, AF057303, AF057304, AF063218, AF06347, AF06348, AF06349, AF06350, AF063#51, AF06353, AF06354, AF06355, AF06356).  相似文献   

18.
The extraordinary polymorphism of major histocompatibility complex (MHC) genes is considered a paradigm of pathogen‐mediated balancing selection, although empirical evidence is still scarce. Furthermore, the relative contribution of balancing selection to shape MHC population structure and diversity, compared to that of neutral forces, as well as its interaction with other evolutionary processes such as hybridization, remains largely unclear. To investigate these issues, we analyzed adaptive (MHC‐DAB gene) and neutral (11 microsatellite loci) variation in 156 brown trout (Salmo trutta complex) from six wild populations in central Italy exposed to introgression from domestic hatchery lineages (assessed with the LDH gene). MHC diversity and structuring correlated with those at microsatellites, indicating the substantial role of neutral forces. However, individuals carrying locally rare MHC alleles/supertypes were in better body condition (a proxy of individual fitness/parasite load) regardless of the zygosity status and degree of sequence dissimilarity of MHC, hence supporting balancing selection under rare allele advantage, but not heterozygote advantage or divergent allele advantage. The association between specific MHC supertypes and body condition confirmed in part this finding. Across populations, MHC allelic richness increased with increasing admixture between native and domestic lineages, indicating introgression as a source of MHC variation. Furthermore, introgression across populations appeared more pronounced for MHC than microsatellites, possibly because initially rare MHC variants are expected to introgress more readily under rare allele advantage. Providing evidence for the complex interplay among neutral evolutionary forces, balancing selection, and human‐mediated introgression in shaping the pattern of MHC (functional) variation, our findings contribute to a deeper understanding of the evolution of MHC genes in wild populations exposed to anthropogenic disturbance.  相似文献   

19.
Major histocompatibility complex (MHC) typing based on microsatellites can be a valuable approach to understanding the selective processes occurring at linked or physically close MHC genes and can provide important information on variability and relationships of populations. Using microsatellites within or in close proximity with bovine lymphocyte antigen (BoLA) genes, we investigated the polymorphisms in the bovine MHC, known as the BoLA, in eight Portuguese cattle breeds. Additional data from non-BoLA microsatellite loci were also used to compare the variability between these regions. Diversity was higher in BoLA than in non-BoLA microsatellites, as could be observed by the number of alleles, allelic richness and observed heterozygosity. Brava de Lide, a breed selected for aggressiveness and nobility, presented the lowest values of observed heterozygosity and allelic richness in both markers. Results from neutrality tests showed few statistically significant differences between the observed Hardy–Weinberg homozygosity ( F ) and the expected homozygosity ( F E), indicating the apparent neutrality of the BoLA microsatellites within the analysed breeds. Nevertheless, we detected a trend of lower values of observed homozygosity compared with the expected one. We also detected some differences in the levels of allelic variability among the four BoLA microsatellites. Our data showed a higher number of alleles at the BoLA-DRB3 locus than at the BoLA-DRBP1 locus. These differences could be related to their physical position in the chromosome and may reflect functional requirements for diversity.  相似文献   

20.
Microsatellite loci are usually considered to be neutral co-dominant and Mendelian markers. We undertook to study the inheritance of five microsatellite loci in the European Lyme disease vector, the tick Ixodes ricinus. Only two loci appeared fully Mendelian while the three others displayed non-Mendelian patterns that highly frequent null alleles could not fully explain. At one locus, IR27, some phenomenon seems to hinder the PCR amplification of one allele, depending on its origin (maternal imprinting) and/or its size (short allele dominance). DNA methylation, which appeared to be a possible explanation of this amplification bias, was rejected by a specific test comparing the amplification efficiency that did not differ between unmethylated and experimentally methylated DNA. The role of allele size in heterozygous individuals was then revealed from the data available on field collected ticks and consistent with the results of a theoretical approach. These observations highlight the need for prudence while inferring reproductive systems (selfing rates), parentage or even allelic frequencies from microsatellite markers, in particular for parasitic organisms for which molecular approaches often represent the only way for population biology inferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号