首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

2.
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long‐term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time‐span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant–soil systems (mesocosms) allowed us to simulate permafrost thaw under near‐natural conditions. We monitored GHG flux dynamics via high‐resolution flow‐through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10–15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2–C m?2 day?1; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2–C m?2 day?1, mean ± SD, pre‐ and post‐thaw, respectively). Radiocarbon dating (14C) of respired CO2, supported by an independent curve‐fitting approach, showed a clear contribution (9%–27%) of old carbon to this enhanced post‐thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost–carbon feedback by adding to the atmospheric CO2 burden post‐thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre‐ and post‐thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.  相似文献   

3.
This study investigated the spatial and temporal variation in soil carbon dioxide (CO2) efflux and its relationship with soil temperature, soil moisture and rainfall in a forest near Manaus, Amazonas, Brazil. The mean rate of efflux was 6.45±0.25 SE μmol CO2 m?2s?1 at 25.6±0.22 SE°C (5 cm depth) ranging from 4.35 to 9.76 μmol CO2 m?2s?1; diel changes in efflux were correlated with soil temperature (r2=0.60). However, the efflux response to the diel cycle in temperature was not always a clear exponential function. During period of low soil water content, temperature in deeper layers had a better relationship with CO2 efflux than with the temperature nearer the soil surface. Soil water content may limit CO2 production during the drying‐down period that appeared to be an important factor controlling the efflux rate (r2=0.39). On the other hand, during the rewetting period microbial activity may be the main controlling factor, which may quickly induce very high rates of efflux. The CO2 flux chamber was adapted to mimic the effects of rainfall on soil CO2 efflux and the results showed that efflux rates reduced 30% immediately after a rainfall event. Measurements of the CO2 concentration gradient in the soil profile showed a buildup in the concentration of CO2 after rain on the top soil. This higher CO2 concentration developed shortly after rainfall when the soil pores in the upper layers were filled with water, which created a barrier for gas exchange between the soil and the atmosphere.  相似文献   

4.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

5.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

6.
CO2 efflux from soil and snow surfaces was measured continuously in a Japanese cedar (Cryptomeria japonica D. Don) forest in central Japan using an open dynamic chamber system. The chamber opens and closes automatically and records measurements based on an open-flow dynamic method. Between May and December, mean soil CO2 efflux ranged from 1,529 mg CO2 m−2 h−1 in September to 255 mg CO2 m−2 h−1 in December. The seasonal change in CO2 efflux from the soil paralleled the seasonal pattern of soil temperature. No marked diurnal trends in soil CO2 efflux were observed on days without rainfall, whereas significant pulses in soil CO2 efflux were observed on days with rainfall. In this plantation, soil CO2 efflux frequently responded to rainfall. Measurements of changes from litter-covered soil to snow-covered surfaces revealed that CO2 efflux decreased from values of ca. 250 mg CO2 m−2 h−1 above soil to less than 33 mg CO2 m−2 h−1 above snow. Soil temperature alone explained 66% of the overall variation in soil CO2 efflux, but explained approximately 85% of the variation when data from two anomalous periods were excluded. Moreover, we found a significant correlation between soil CO2 efflux and soil moisture (which explained 44% of the overall variation) using a second-order polynomial function. Our results suggest that the seasonality of CO2 efflux is affected not only by soil temperature and moisture, but also by drying and rewetting cycles and by litterfall pulses.  相似文献   

7.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO2‐C m?2 year?1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO2‐C m?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m?2), and was approximately CO2‐C neutral (?21 g CO2‐C m?2 year?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.  相似文献   

8.
The fire regime of ponderosa pine forests in the southwestern United States has shifted over the past century from historically frequent, low-intensity surface fires to infrequent, stand-replacing crown fires. We quantified plant and soil carbon (C) responses to this new fire regime and assessed interactions between changes in fire regime and changes in precipitation regime predicted by some climate models (specifically, an earlier monsoon rain season). We hypothesized that soil C pools and carbon dioxide (CO2) efflux rates would decrease initially following stand-replacing fires (due to low plant C inputs and the loss of the soil surficial organic (O) horizon), but then increase with time-after-fire (as plant C inputs increase). Water availability often limits soil biological activity in these forests, but we predicted that low soil C availability following fire would constrain soil CO2 efflux responses to precipitation. In a series of sites with histories of stand-replacing fires that burned between 2 and 34?years prior to sampling, burned patches had lower soil C pools and fluxes than adjacent unburned patches, but there was no evidence of a trend with time-after-fire. Burned forests had 7,500?g C m?2 less live plant biomass C (P?<?0.001), 1,600?g C m?2 less soil total C (P?<?0.001) and 90?g C m?2 less soil labile C (P?<?0.001) than unburned forests. Lower soil labile C in burned patches was due to both a loss of O horizon mass with fire and lower labile C concentrations (g labile C kg?1 soil total C) in the mineral soil. During the annual drought that precedes summer monsoon rains, both burned and unburned patches had soil CO2 efflux rates ranging from 0.9 to 1.1?g CO2-C m?2 day?1. During the monsoon season, soil CO2 efflux in unburned patches increased to approximately 4.8?g CO2-C m?2 day?1 and rates in paired burned patches (3.4?g CO2-C m?2 day?1) were lower (P?<?0.001). We also used field irrigation to experimentally create an earlier and longer monsoon season, and soil CO2 efflux rates at both burned and unburned plots increased initially in response to watering, but decreased to below control (plots without irrigation) rates within weeks. Watering did not significantly change cumulative growing season soil CO2 efflux, supporting our prediction that C availability constrains soil CO2 efflux responses to precipitation. This research advances our understanding of interactions among climate, fire, and C in southwestern forests, suggesting that climate-induced shifts toward more stand-replacing fires will decrease soil C for decades, such that a single fire can constrain future soil biological responses to precipitation regime changes.  相似文献   

9.
Wetlands are important sources of methane (CH4) and sinks of carbon dioxide (CO2). However, little is known about CH4 and CO2 fluxes and dynamics of seasonally flooded tropical forests of South America in relation to local carbon (C) balances and atmospheric exchange. We measured net ecosystem fluxes of CH4 and CO2 in the Pantanal over 2014–2017 using tower‐based eddy covariance along with C measurements in soil, biomass and water. Our data indicate that seasonally flooded tropical forests are potentially large sinks for CO2 but strong sources of CH4, particularly during inundation when reducing conditions in soils increase CH4 production and limit CO2 release. During inundation when soils were anaerobic, the flooded forest emitted 0.11 ± 0.002 g CH4‐C m?2 d?1 and absorbed 1.6 ± 0.2 g CO2‐C m?2 d?1 (mean ± 95% confidence interval for the entire study period). Following the recession of floodwaters, soils rapidly became aerobic and CH4 emissions decreased significantly (0.002 ± 0.001 g CH4‐C m?2 d?1) but remained a net source, while the net CO2 flux flipped from being a net sink during anaerobic periods to acting as a source during aerobic periods. CH4 fluxes were 50 times higher in the wet season; DOC was a minor component in the net ecosystem carbon balance. Daily fluxes of CO2 and CH4 were similar in all years for each season, but annual net fluxes varied primarily in relation to flood duration. While the ecosystem was a net C sink on an annual basis (absorbing 218 g C m?2 (as CH4‐C + CO2‐C) in anaerobic phases and emitting 76 g C m?2in aerobic phases), high CH4 effluxes during the anaerobic flooded phase and modest CH4 effluxes during the aerobic phase indicate that seasonally flooded tropical forests can be a net source of radiative forcings on an annual basis, thus acting as an amplifying feedback on global warming.  相似文献   

10.
The objective of the study was to examine changes in microbial parameters have been used to monitor changes in soil quality under different land uses in north of Iran. The microbial parameters included microbial respiration (MR), substrate induced respiration (SIR), carbon availability index (CAI), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), ratio of MBC/MBN, metabolic quotient (qCO2) and microbial ratio were determined under different land use/cover, i.e. virgin natural forest (VNF), degraded natural forest (DNF), alder plantation (AP), sequoia plantation (SP), improved fallow (IF) and home garden (HG) areas in northern Iran. Five composed samples per land use/cover were taken from the top 10 cm of the soil. MR and SIR (0.45 and 1.66 mg CO2-C g?1 day?1, respectively) were found to be significantly higher under AP land uses than in the other areas. CAI did not differ for the land uses; MBC (591 and 590 mg kg?1, respectively) had higher significantly under SP and VNF land uses than in the other areas. MBN (64.25 and 62.33, respectively mg kg?1) was significantly higher in AP and VNF land uses, ratio of MBC/MBN (17.02) was higher in SP land use than other areas, HG had significantly higher qCO2 (0.0012 μg CO2-C mg?1 MBC day?1) and finally microbial ratio was significantly higher under IF (599.16) in comparison with HG > AP ≈ DNF > VNF > SP areas. Overall, our results indicate that AP land use (Alnus subcordata C. A. Mey.) increase of soil quality and alder plantation is suitable for rehabilitation of degraded natural forests.  相似文献   

11.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass using trenching and tent separation techniques in a secondary forest (SF) and a pine (Pinus caribaea Morelet) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil surface CO2 efflux was measured using the alkali trap method at 12 randomly-distributed locations in each treatment (control, root exclusion, litter exclusion, and both root and litter exclusion) in the plantation and the SF, respectively. We measured soil CO2 efflux every two months and collected soil samples at each sampling location in different seasons to determine microbial biomass from August 1996 to July 1997. We found that soil CO2 efflux was significantly reduced in the litter and root exclusion plots (7-year litter and/or root exclusion) in both the secondary forest and the pine plantation compared with the control. The reduction of soil CO2 efflux was 35.6% greater in the root exclusion plots than in the litter exclusion plots in the plantation, whereas a reversed pattern was found in the secondary forest. Microbial biomass was also reduced during the litter and root exclusion period. In the root exclusion plots, total fungal biomass averaged 31.4% and 65.2% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 24% and 8.3% lower than the control plots in the plantation and the secondary forest, respectively. In the litter exclusion treatment, total fungal biomass averaged 69.2% and 69.7% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 48% and 50.1% lower than the control plots in the plantation and the secondary forest, respectively. Soil CO2 efflux was positively correlated with both fungal and bacterial biomass in both the plantation the secondary forest. The correlation between soil CO2 efflux and active fungal biomass was significantly higher in the plantation than in the secondary forest. However, the correlation between the soil CO2 efflux and both the active and total bacterial biomass was significantly higher in the secondary forest than in the plantation in the day season. In addition, we found soil CO2 efflux was highly related to the strong interactions among root, fungal and bacterial biomass by multiple regression analysis (R2 > 0.61, P < 0.05). Our results suggest that carbon input from aboveground litterfall and roots (root litter and exudates) is critical to the soil microbial community and ecosystem carbon cycling in the wet tropical forests.  相似文献   

12.
A closed‐dynamic‐chamber system (CDCS) was used to measure the spatial and seasonal variability of the soil CO2 efflux (Fs) in beech and in Douglas fir patches of the Vielsalm forest (Belgium). First the difference between natural and measured soil CO2 efflux induced by the presence of the CDCS was studied. The impact on the measurements of the pressure difference between the outside (natural condition) and the inside of the chamber was found to be small (0.4%). The influence of wind disturbance in the closed chamber was tested by comparison with an open‐chamber system characterized by a different wind distribution. A very good correlation between the two systems was found (r2 = 0.99) but the open system yielded slightly lower fluxes than the closed one (slope = 0.88 ± 0.05). A measurement procedure has been developed to minimize the effect of the other sources of perturbation. The spatial and seasonal evolution of the soil CO2 efflux was obtained by performing regular measurements on 29 spots in the beech patch over a period of 12 months and on 24 spots in the Douglas fir patch over 8 months. For each spot, the experimental relationship between Fs and soil temperature was compared with the fitted line for an Arrhenius relationship with a soil temperature‐dependent activation energy. Soil temperature explains 73% of the seasonal variation for all the data. The spatial average of the soil CO2 efflux at 10 °C (Fs10) in the beech patch is 2.57 ± 0.41 μmol m?2 s?1, approximately twice the average in the Douglas fir patch recorded at 1.42 ± 0.22 μmol m?2 s?1. The litter fall analysis seems to indicate that soil organic matter quality and quantity may be one the reasons for this difference. Finally the annual soil CO2 efflux was calculated for the beech and Douglas fir patches (870 ± 140 and 438 ± 68 gC m?2 y?1, respectively). The beech value would represent 92 ± 15% of the annual ecosystem respiration estimated from the eddy covariance measurements.  相似文献   

13.
The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem‐scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable scaffolding tower to measure woody tissue CO2 efflux from ground level to the canopy top across a range of sites of varying slope and soil phosphorus content in a primary tropical rain forest in Costa Rica. The objectives of this study were to: (1) determine whether to use surface area, volume, or biomass for modeling and extrapolating wood CO2 efflux, (2) determine if wood CO2 efflux varied seasonally, (3) identify if wood CO2 efflux varied by functional group, height in canopy, soil fertility, or slope, and (4) extrapolate wood CO2 efflux to the forest. CO2 efflux from small diameter woody tissue (<10 cm) was related to surface area, while CO2 efflux from stems >10 cm was related to both surface area and volume. Wood CO2 efflux showed no evidence of seasonality over 2 years. CO2 efflux per unit wood surface area at 25° (FA) was highest for the N‐fixing dominant tree species Pentaclethra macroloba, followed by other tree species, lianas, then palms. Small diameter FA increased steeply with increasing height, and large diameter FA increased with diameter. Soil phosphorus and slope had slight, but complex effects on FA. Wood CO2 efflux per unit ground area was 1.34±0.36 μmol m?2 s?1, or 508±135 g C m?2 yr?1. Small diameter wood, only 15% of total woody biomass, accounted for 70% of total woody tissue CO2 efflux from the forest; while lianas, only 3% of total woody biomass, contributed one‐fourth of the total wood CO2 efflux.  相似文献   

14.
米槠和杉木人工林土壤呼吸及其组分分析   总被引:4,自引:0,他引:4       下载免费PDF全文
区分森林土壤呼吸组分是了解生态系统碳循环的重要环节。该文以福建省三明市格氏栲自然保护区米槠(Castanopsis carlesii)人工林和邻近的杉木(Cunninghamia lanceolata)人工林为研究对象, 于2012年8月至2013年7月, 采用LI-8100开路式土壤碳通量系统, 通过挖壕沟方法, 测定了土壤呼吸及异养呼吸的速率, 同时测定了5 cm深处的土壤温度和0-12 cm深处的土壤含水量。利用指数模型和双因素模型, 分析土壤呼吸及其组分与土壤温度和土壤含水量的关系, 同时计算了土壤呼吸各组分在土壤呼吸中所占的比例, 并分析了不同森林类型对土壤呼吸及其组分的影响。结果表明: 米槠人工林和杉木人工林土壤呼吸及其组分的季节变化显著, 均呈单峰型曲线, 与5 cm深处的土壤温度呈极显著正相关关系。土壤温度可以分别解释米槠人工林土壤呼吸、自养呼吸和异养呼吸变化的70.3%、73.4%和58.2%, 可以解释杉木人工林土壤呼吸、自养呼吸和异养呼吸变化的77.9%、65.7%和79.2%。土壤呼吸及其组分与土壤含水量没有相关关系。米槠和杉木人工林自养呼吸的年通量分别为4.00和2.18 t C·hm-2·a-1, 占土壤呼吸年通量的32.5%和24.1%; 异养呼吸年通量分别为8.32和6.88 t C·hm-2·a-1, 分别占土壤呼吸年通量的67.5%和75.9%, 米槠人工林土壤呼吸及其组分的年通量都大于杉木人工林。  相似文献   

15.
Although soil carbon dioxide (CO2) efflux from tropical forests may play an important role in global carbon (C) balance, our knowledge of the fluctuations and factors controlling soil CO2 efflux in the Asian tropics is still poor. This study characterizes the temporal and spatial variability in soil CO2 efflux in relation to temperature/moisture content and estimates annual efflux from the forest floor in an aseasonal intact tropical rainforest in Sarawak, Malaysia. Soil CO2 efflux varied widely in space; the range of variation averaged 17.4 μmol m−2 s−1 in total. While most CO2 flux rates were under 10 μmol m−2 s−1, exceptionally high fluxes were observed sporadically at several sampling points. Semivariogram analysis revealed little spatial dependence in soil CO2 efflux. Temperature explained nearly half of the spatial heterogeneity, but the effect varied with time. Seasonal variation in CO2 efflux had no fixed pattern, but was significantly correlated with soil moisture content. The correlation coefficient with soil moisture content (SMC) at 30 and 60 cm depth was higher than at 10 cm depths. The annual soil CO2 efflux, estimated from the relationship between CO2 efflux and SMC at 30 cm depth, was 165 mol m−2 year−1 (1,986 g C m−2 year−1). As this area is known to suffer severe drought every 4–5 years caused by the El Nino-Southern Oscillation, the results suggest that an unpredictable dry period might affect soil CO2 efflux, leading an annual variation in soil C balance.  相似文献   

16.
Soil‐surface CO2 efflux and its spatial and temporal variations were examined in an 8‐y‐old ponderosa pine plantation in the Sierra Nevada Mountains in California from June 1998 to August 1999. Continuous measurements of soil CO2 efflux, soil temperatures and moisture were conducted on two 20 × 20 m sampling plots. Microbial biomass, fine root biomass, and the physical and chemical properties of the soil were also measured at each of the 18 sampling locations on the plots. It was found that the mean soil CO2 efflux in the plantation was 4.43 µmol m?2 s?1 in the growing season and 3.12 µmol m?2 s?1 in the nongrowing season. These values are in the upper part of the range of published soil‐surface CO2 efflux data. The annual maximum and minimum CO2 efflux were 5.87 and 1.67 µmol m?2 s?1, respectively, with the maximum occurring between the end of May and early June and the minimum in December. The diurnal fluctuation of CO2 efflux was relatively small (< 20%) with the minimum appearing around 09.00 hours and the maximum around 14.00 hours. Using daytime measurements of soil CO2 efflux tends to overestimate the daily mean soil CO2 efflux by 4–6%. The measurements taken between 09.00 and 11.00 hours (local time) seem to better represent the daily mean with a reduced sampling error of 0.9–1.5%. The spatial variation of soil CO2 efflux among the 18 sampling points was high, with a coefficient of variation of approximately 30%. Most (84%) of the spatial variation was explained by fine root biomass, microbial biomass, and soil physical and chemical properties. Although soil temperature and moisture explained most of the temporal variations (76–95%) of soil CO2 efflux, the two variables together explained less than 34% of the spatial variation. Microbial biomass, fine root biomass, soil nitrogen content, organic matter content, and magnesium content were significantly and positively correlated with soil CO2 efflux, whereas bulk density and pH value were negatively correlated with CO2 efflux. The relationship between soil CO2 efflux and soil temperature was significantly controlled by soil moisture with a Q10 value of 1.4 when soil moisture was <14% and 1.8 when soil moisture was >14%. Understanding the spatial and temporal variations is essential to accurately assessment of carbon budget at whole ecosystem and landscape scales. Thus, this study bears important implications for the study of large‐scale ecosystem dynamics, particularly in response to climatic variations and management regimes.  相似文献   

17.
We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy‐fraction organic carbon (HF‐OC) measured by the density fractionation technique, more efficiently than the tree plantation did. Although there was no significant difference in total soil organic carbon (SOC) between the plantation (5.59±0.09 kg m?2) and the secondary forest (5.68±0.16 kg m?2), the proportion of HF‐OC carbon to the total SOC was significantly higher in the secondary forest (61%) than in the plantation (45%) (P<0.05). Forest floor mass and aboveground litterfall in the plantation were 168% and 22.8% greater than those in the secondary forest, respectively, while the decomposition rate of leaf litter in the plantation was 23.3% lower than that in the secondary forest. The annual mean soil respirations in the plantation and the secondary forest were 2.32±0.15 and 2.65±0.18 g C m?2 day?1, respectively, with a consistently higher rate in the secondary forest than in the plantation throughout the year. Microbial biomass measured by fumigation–incubation method demonstrated a strong seasonal variation in the secondary forest with 804 mg kg?1 in the wet season and 460 mg kg?1 in the dry season. However, the seasonal change of microbial biomass in the plantation was less significant. Our results suggested that secondary forests could stock more long‐term SOC than the plantations in the wet tropics because the naturally generated secondary forest accumulated more HF‐OC than the managed plantation.  相似文献   

18.
Disturbances by fire and harvesting are thought to regulate the carbon balance of the Canadian boreal forest over scales of several decades. However, there are few direct measurements of carbon fluxes following disturbances to provide data needed to refine mathematical models. The eddy covariance technique was used with paired towers to measure fluxes simultaneously at disturbed and undisturbed sites over periods of about one week during the growing season in 1998 and 1999. Comparisons were conducted at three sites: a 1‐y‐old burned jackpine stand subjected to an intense crown fire at the International Crown Fire Modelling Experiment site near Fort Providence, North‐west Territories; a 1‐y‐old clearcut aspen area at the EMEND project near Peace River, Alberta; and a 10‐y‐old burned, mixed forest near Prince Albert National Park, Saskatchewan. Nearby mature forest stands of the same types were also measured as controls. The harvested site had lower net radiation (Rn), sensible (H) and latent (LE) heat fluxes, and greater ground heat fluxes (G) than the mature forest. Daytime CO2 fluxes were much reduced, but night‐time CO2 fluxes were identical to that of the mature aspen forest. It is hypothesized that the aspen roots remained alive following harvesting, and dominated soil respiration. The overall effect was that the harvested site was a carbon source of about 1.6 gC m?2 day?1, while the mature site was a sink of about ?3.8 gC m?2 day?1. The one‐year‐old burn had lower Rn, H and LE than the mature jackpine forest, and had a continuous CO2 efflux of about 0.8 gC m–2 day?1 compared to the mature forest sink of ? 0.5 g C m?2 day?1. The carbon source was likely caused by decomposition of fire‐killed vegetation. The 10‐y‐old burned site had similar H, LE, and G to the mature mixed forest site. Although the diurnal amplitude of the CO2 fluxes were slightly lower at the 10‐y‐old site, there was no significant difference between the daily integrals (? 1.3 gC m?2 day?1 at both sites). It appears that most of the change in carbon flux occurs within the first 10 years following disturbance, but more data are needed on other forest and disturbance types for the first 20 years following the disturbance event.  相似文献   

19.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

20.
Most fluvial networks worldwide include watercourses that recurrently cease to flow and run dry. The spatial and temporal extent of the dry phase of these temporary watercourses is increasing as a result of global change. Yet, current estimates of carbon emissions from fluvial networks do not consider temporary watercourses when they are dry. We characterized the magnitude and variability of carbon emissions from dry watercourses by measuring the carbon dioxide (CO2) flux from 10 dry streambeds of a fluvial network during the dry period and comparing it to the CO2 flux from the same streambeds during the flowing period and to the CO2 flux from their adjacent upland soils. We also looked for potential drivers regulating the CO2 emissions by examining the main physical and chemical properties of dry streambed sediments and adjacent upland soils. The CO2 efflux from dry streambeds (mean ± SD = 781.4 ± 390.2 mmol m?2 day?1) doubled the CO2 efflux from flowing streambeds (305.6 ± 206.1 mmol m?2 day?1) and was comparable to the CO2 efflux from upland soils (896.1 ± 263.2 mmol m?2 day?1). However, dry streambed sediments and upland soils were physicochemically distinct and differed in the variables regulating their CO2 efflux. Overall, our results indicate that dry streambeds constitute a unique and biogeochemically active habitat that can emit significant amounts of CO2 to the atmosphere. Thus, omitting CO2 emissions from temporary streams when they are dry may overlook the role of a key component of the carbon balance of fluvial networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号