共查询到16条相似文献,搜索用时 15 毫秒
1.
为揭示油菜素甾醇类化合物提高作物耐盐的效应和机理,研究了10-11、10-10、10-9、10-8、10-7、10-6、10-5 mol/L 2,4-表油菜素内酯(EBL)浸种处理对0、50、100、150、175 mmol/L NaCl胁迫7 d的番茄种子萌发、生长、溶质积累、抗氧化代谢的影响。结果显示:NaCl浓度越高的盐胁迫下,10-9 mol/L EBL浸种可体现出越显著的促进番茄种子萌发的效应;在所有处理下,EBL浸种浓度过高,即10-6、10-5 mol/L EBL,均表现出对种子萌发的抑制效应。盐胁迫下种子萌发后,一定浓度的EBL浸种可表现出明显的增加种子胚根和下胚轴长,提高萌发种子鲜重和种子活力指数,其中10-9 mol/L EBL浸种处理促进效果最适;EBL浸种浓度过高,则表现出抑制效应。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL浸种均可降低萌发种子体内的O2·-、H2O2、丙二醛(MDA)和脯氨酸(Pro)含量;盐胁迫下,10-9 mol/L EBL浸种可显著提高萌发种子可溶性糖(SS)和可溶性蛋白(SP)的含量。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL处理可不同程度促进番茄种苗超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的上升。综上所述,盐胁迫下,一定浓度范围内的EBL浸种可明显促进番茄种子萌发或成苗,其中以10-9 mol/L EBL浸种的效果最好,主要是因为EBL施用可积极促进番茄种子萌发中物质转化,SS和SP等溶质积累增多,增强其渗透调节能力;同时SOD和POD酶活增强,缓解盐胁迫导致番茄种子萌发中的次生氧化胁迫。 相似文献
2.
Reduced germination success of temperate grassland seeds sown in dung: consequences for post‐dispersal seed fate 下载免费PDF全文
- Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment.
- We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions).
- Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions.
- According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung.
3.
The effects of dry heat, wet heat, charred wood and smoke on the germination of dormant soil‐stored seeds from a Eucalyptus woodland in western Victoria were tested by using a glasshouse seed‐bank germination experiment. Seedling density, species richness and species composition were compared between replicated treated and control samples. A total of 5922 seedlings, comprising 59 plant species, was recorded from the soil samples over a period of 150 days. While a few species dominated (including Centrolepis strigosa, Wahlenbergia gracilenta and Ixodia achillaeoides), 26 species were represented by fewer than five seedlings and 18 species were restricted to single treatment types. With the exception of charred wood, all treatments led to a significant increase in seed germination relative to the control. The highest number of germinants was obtained for the smoke treatment, with a mean (± SE) of 12 547 ± 449 seedlings m–2. Heat treatments yielded intermediate densities, with means (± SE) varying between 7445 ± 234 and 9133 ± 445 seedlings m–2. In comparison with the estimates of seed‐bank sizes from other fire‐prone ecosystems, these densities are high. Species richness differed significantly among treatments. Highest mean richness was recorded in the smoke treatment and lowest for the control and charred wood treatments. There were significant differences in seed‐bank species composition between treatment types based on analysis of similarity (Anosim) using Bray–Curtis similarity. While heat was a specific requirement for triggering germination in hard‐seeded species (e.g. Fabaceae), smoke was the most effective trigger for species from a broad range of other families. The potentially confounding effect of physical and chemical mechanisms of germination stimulation in heated bulk soil samples is raised as an issue requiring further investigation in relation to the role of smoke as a germination trigger. 相似文献
4.
Lilian E. D. Silveira Joo Paulo Ribeiro‐Oliveira Daiani Ajala‐Luccas Juliana P. Bravo Edvaldo A. A. da Silva 《The Annals of applied biology》2019,175(2):136-145
We are clarifying how the functional embryo growth occurs in germinating seeds of Solanum lycocarpum A. St.‐Hil., a nurse plant with a central role in forest dynamics in the Cerrado (a biodiversity hotspot). For that, we used classical seed germination measurements (germinability, mean germination time, mean germination rate, coefficient of variation of the germination time, synchronisation index and germination time range) and gene expression of mRNA codifying key proteins/enzymes for the success in the seed–seedling transition (Cyclin, Actin, Small Heat Shock Protein, Glutathione S‐transferase, Malate Dehydrogenase, Alcohol Dehydrogenase). Our findings demonstrate: (a) Although germination kinetics in S. lycocarpum seeds is slower than that in tomato seeds, the fold change of genes codifying key enzymes for the embryo development is similar in germinating seeds of both species. (b) The genes used here are useful, from a technical point of view, for classifying commercial seed samples of the species in relation to physiological quality. More notably, cyclin and malate dehydrogenase genes have a greater expression, both in germination sensu stricto and in immediate post‐germination. (c) A molecular framework for the embryo growth in germinating seeds of S. lycocarpum can be a functional explication for the species to be a nurse plant. Thus, the overlapping of classical and contemporary measurements is especially interesting to those species playing a central role in the environment, such as nurse plants, and may represent a new conservationist paradigm. 相似文献
5.
6.
Variation in the response of tomato (Solanum lycopersicum) breeding lines to the effects of benzo (1,2,3) thiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) on systemic acquired resistance and seed germination 下载免费PDF全文
Paul H. Goodwin Cheryl L. Trueman Steven A. Loewen Rochelle Tazhoor 《Journal of Phytopathology》2017,165(10):670-680
Genetic variation may play a major role in how plants respond to activators of systemic acquired resistance. To examine this, the defence activator benzo(1,2,3)thiadiazole‐7‐carbothioic acid S‐methyl ester (BTH) was applied to seed of different breeding lines of tomato (Solanum lycopersicum) with diverse pedigrees, and the levels of induced resistance against Pseudomonas syringae pv. tomato, changes in defence gene expression and detrimental effects on seed germination and seedling emergence were measured. Two breeding lines, 7007 and 7024, were selected as non‐responsive and responsive to BTH. The SAR‐associated genes, SlPR1a and SlPR3b, were induced earlier or more strongly over the control prior to inoculation for line 7024 but not for line 7007. This was not observed for the ISR‐related genes, SlPin2 and SlPR2b. BTH inhibition of seed germination and seedling emergence was more delayed in line 7024 than 7007. However, applying BTH as a seed or soil drip reduced the delay. Thus, greater levels of BTH response have both positive (i.e., induced resistance and expression of SAR‐related gene expression) and negative (i.e., inhibition of seed germination and seedling emergence) effects and can differ significantly between genotypes. Thus, recommendations for use of induced resistance activators should include plant genotype recommendations and consider possible negative impacts of greater responsiveness. 相似文献
7.
8.
Fengyan Yi Zhaoren Wang Carol C. Baskin Jerry M. Baskin Ruhan Ye Hailian Sun Yuanyuan Zhang Xuehua Ye Guofang Liu Xuejun Yang Zhenying Huang 《Ecology and evolution》2019,9(4):2149-2159
Investigating how seed germination of multiple species in an ecosystem responds to environmental conditions is crucial for understanding the mechanisms for community structure and biodiversity maintenance. However, knowledge of seed germination response of species to environmental conditions is still scarce at the community level. We hypothesized that responses of seed germination to environmental conditions differ among species at the community level, and that germination response is not correlated with seed size. To test this hypothesis, we determined the response of seed germination of 20 common species in the Siziwang Desert Steppe, China, to seasonal temperature regimes (representing April, May, June, and July) and drought stress (0, ?0.003, ?0.027, ?0.155, and ?0.87 MPa). Seed germination percentage increased with increasing temperature regime, but Allium ramosum, Allium tenuissimum, Artemisia annua, Artemisia mongolica, Artemisia scoparia, Artemisia sieversiana, Bassia dasyphylla, Kochia prastrata, and Neopallasia pectinata germinated to >60% in the lowest temperature regime (April). Germination decreased with increasing water stress, but Allium ramosum, Artemisia annua, Artemisia scoparia, Bassia dasyphylla, Heteropappus altaicus, Kochia prastrata, Neopallasia pectinata, and Potentilla tanacetifolia germinated to near 60% at ?0.87 MPa. Among these eight species, germination of six was tolerant to both temperature and water stress. Mean germination percentage in the four temperature regimes and the five water potentials was not significantly correlated with seed mass or seed area, which were highly correlated. Our results suggest that the species‐specific germination responses to environmental conditions are important in structuring the desert steppe community and have implications for predicting community structure under climate change. Thus, the predicted warmer and dryer climate will favor germination of drought‐tolerant species, resulting in altered proportions of germinants of different species and subsequently change in community composition of the desert steppe. 相似文献
9.
10.
Fu‐Yuan Zhu Yi‐Zhen Wu Li‐Juan Xie Tie‐Yuan Liu Ze‐Zhuo Su Shi Xiao Hao Zhang Jianchang Yang Hai‐Yong Gu Xuan‐Xuan Hou Qi‐Juan Hu Hui‐Juan Yi Chang‐Xiang Zhu Jianhua Zhang Ying‐Gao Liu 《The Plant journal : for cell and molecular biology》2018,94(4):612-625
Rice (Oryza sativa L.) has two ecotypes, upland and lowland rice, that have been observed to show different tolerance levels under flooding stress. In this study, two rice cultivars, upland (Up221, flooding‐intolerant) and lowland (Low88, flooding‐tolerant), were initially used to study their molecular mechanisms in response to flooding germination. We observed that variations in the OsCBL10 promoter sequences in these two cultivars might contribute to this divergence in flooding tolerance. Further analysis using another eight rice cultivars revealed that the OsCBL10 promoter could be classified as either a flooding‐tolerant type (T‐type) or a flooding‐intolerant type (I‐type). The OsCBL10 T‐type promoter only existed in japonica lowland cultivars, whereas the OsCBL10 I‐type promoter existed in japonica upland, indica upland and indica lowland cultivars. Flooding‐tolerant rice cultivars containing the OsCBL10 T‐type promoter have shown lower Ca2+ flow and higher α‐amylase activities in comparison to those in flooding‐intolerant cultivars. Furthermore, the OsCBL10 overexpression lines were sensitive to both flooding and hypoxic treatments during rice germination with enhanced Ca2+ flow in comparison to wild‐type. Subsequent findings also indicate that OsCBL10 may affect OsCIPK15 protein abundance and its downstream pathways. In summary, our results suggest that the adaptation to flooding stress during rice germination is associated with two different OsCBL10 promoters, which in turn affect OsCBL10 expression in different cultivars and negatively affect OsCIPK15 protein accumulation and its downstream cascade. 相似文献
11.
Reduced expression of selected FASCICLIN‐LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds 下载免费PDF全文
Juan Ignacio Cagnola Gonzalo Javier Dumont de Chassart Silvia Elizabeth Ibarra Claudio Chimenti Martiniano María Ricardi Brent Delzer Hernán Ghiglione Tong Zhu María Elena Otegui José Manuel Estevez Jorge José Casal 《Plant, cell & environment》2018,41(3):661-674
Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well‐watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2–6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN‐LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain‐ and loss‐of‐function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress‐induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis. 相似文献
12.
Ectopic expression of NnPER1, a Nelumbo nucifera 1‐cysteine peroxiredoxin antioxidant,enhances seed longevity and stress tolerance in Arabidopsis 下载免费PDF全文
Hu‐hui Chen Pu Chu Yu‐liang Zhou Yu Ding Yin Li Jun Liu Li‐wen Jiang Shang‐zhi Huang 《The Plant journal : for cell and molecular biology》2016,88(4):608-619
13.
14.
Petr Dvok Yuliya Krasylenko Miroslav Ove
ka Jasim Basheer Veronika Zapletalov Jozef amaj Tom Tak
《Plant, cell & environment》2021,44(1):68-87
Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue‐ and organ‐specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light‐sheet and Airyscan confocal microscopy. FSD1‐GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1‐GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1‐GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1‐GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants. 相似文献
15.
16.
Jiahe Wu Chuanfeng Zhu Jinhuan Pang Xiangrong Zhang Chunlin Yang Guixian Xia Yingchuan Tian Chaozu He 《The Plant journal : for cell and molecular biology》2014,80(6):1118-1130
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2‐type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent‐kaurene were observed during germination in antisense plants. Based on yeast two‐hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual‐luciferase reporter assays showed that OsbZIP58 binds the G‐box cis‐element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. 相似文献