首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Aminooxyacetate, an inhibitor of pyridoxal-dependent enzymes, is routinely used to inhibit gamma-aminobutyrate metabolism. The bioenergetic effects of the inhibitor on guinea-pig cerebral cortical synaptosomes are investigated. It prevents the reoxidation of cytosolic NADH by the mitochondria by inhibiting the malate-aspartate shuttle, causing a 26 mV negative shift in the cytosolic NAD+/NADH redox potential, an increase in the lactate/pyruvate ratio and an inhibition of the ability of the mitochondria to utilize glycolytic pyruvate. The 3-hydroxybutyrate/acetoacetate ratio decreased significantly, indicating oxidation of the mitochondrial NAD+/NADH couple. The results are consistent with a predominant role of the malate-aspartate shuttle in the reoxidation of cytosolic NADH in isolated nerve terminals. Aminooxyacetate limits respiratory capacity and lowers mitochondrial membrane potential and synaptosomal ATP/ADP ratios to an extent similar to glucose deprivation. Thus, the inhibitor induces a functional 'hypoglycaemia' in nerve terminals and should be used with caution.  相似文献   

2.
We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.  相似文献   

3.
The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality.  相似文献   

4.
Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg‐AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg‐AD neurons. We also observed an age‐dependent loss of gene expression of key redox‐dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age‐related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age‐related declines in NAD(P)H. Our data indicate that in aging and more so in AD‐like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.  相似文献   

5.
Since controversy exists on how hypoxia influences vascular reactive oxygen species (ROS) generation, and our previous work provided evidence that it relaxes endothelium-denuded bovine coronary arteries (BCA) in a ROS-independent manner by promoting cytosolic NADPH oxidation, we examined how hypoxia alters relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in BCA. Methods were developed to image and interpret the effects of hypoxia on NAD(P)H redox based on its autofluorescence in the cytosolic, mitochondrial, and nuclear regions of smooth muscle cells isolated from BCA. Aspects of anaerobic glycolysis and cytosolic NADH redox in BCA were assessed from measurements of lactate and pyruvate. Imaging changes in mitosox and dehydroethidium fluorescence were used to detect changes in mitochondrial and cytosolic-nuclear superoxide, respectively. Hypoxia appeared to increase mitochondrial and decrease cytosolic-nuclear superoxide under conditions associated with increased cytosolic NADH (lactate/pyruvate), mitochondrial NAD(P)H, and hyperpolarization of mitochondria detected by tetramethylrhodamine methyl-ester perchlorate fluorescence. Rotenone appeared to increase mitochondrial NAD(P)H and superoxide, suggesting hypoxia could increase superoxide generation by complex I. However, hypoxia decreased mitochondrial superoxide in the presence of contraction to 30 mM KCl, associated with decreased mitochondrial NAD(P)H. Thus, while hypoxia augments NAD(P)H redox associated with increased mitochondrial superoxide, contraction with KCl reverses these effects of hypoxia on mitochondrial superoxide, suggesting mitochondrial ROS increases do not mediate hypoxic relaxation in BCA. Since hypoxia lowers pyruvate, and pyruvate inhibits hypoxia-elicited relaxation and NADPH oxidation in BCA, mitochondrial control of pyruvate metabolism associated with cytosolic NADPH redox regulation could contribute to sensing hypoxia.  相似文献   

6.
The cytoplasmic NADH/NAD redox potential affects energy metabolism and contractile reactivity of vascular smooth muscle. NADH/NAD redox state in the cytosol is predominately determined by glycolysis, which in smooth muscle is separated into two functionally independent cytoplasmic compartments, one of which fuels the activity of Na(+)-K(+)-ATPase. We examined the effect of varying the glycolytic compartments on cystosolic NADH/NAD redox state. Inhibition of Na(+)-K(+)-ATPase by 10 microM ouabain resulted in decreased glycolysis and lactate production. Despite this, intracellular concentrations of the glycolytic metabolite redox couples of lactate/pyruvate and glycerol-3-phosphate/dihydroxyacetone phosphate (thus NADH/NAD) and the cytoplasmic redox state were unchanged. The constant concentration of the metabolite redox couples and redox potential was attributed to 1) decreased efflux of lactate and pyruvate due to decreased activity of monocarboxylate B-H(+) transporter secondary to decreased availability of H(+) for cotransport and 2) increased uptake of lactate (and perhaps pyruvate) from the extracellular space, probably mediated by the monocarboxylate-H(+) transporter, which was specifically linked to reduced activity of Na(+)-K(+)-ATPase. We concluded that redox potentials of the two glycolytic compartments of the cytosol maintain equilibrium and that the cytoplasmic NADH/NAD redox potential remains constant in the steady state despite varying glycolytic flux in the cytosolic compartment for Na(+)-K(+)-ATPase.  相似文献   

7.
Apolipoprotein (apo) E4 sets the stage for neuropathology in Alzheimer's disease (AD) by causing mitochondrial dysfunction and altering mitochondria-associated membranes. Contact and apposition of mitochondrial-endoplasmic reticulum membranes are enhanced in brain cells in AD and associated with increases in tethering and spacing proteins that modulate many cellular processes. Contact site protein levels are higher in apoE4 cells. In apoE4 neurons, the NAD+/NADH ratio is lowered, reactive oxygen species are increased, and NAD/NADH pathway components and redox proteins are decreased. Oxidative phosphorylation is impaired and reserve ATP generation capacity is lacking. ApoE4 neurons have ∼50% fewer respiratory complex subunits (e.g., ATP synthase) and may increase translocase levels of the outer and inner mitochondrial membranes to facilitate delivery of nucleus-encoded complex subunits. Respiratory complex assembly relies on mitochondrial cristae organizing system subunits that are altered in apoE4 cells, and apoE4 increases mitochondrial proteases that control respiratory subunit composition for complex assembly.  相似文献   

8.
Friedreich's ataxia is a hereditary neurodegenerative disease caused by reduced expression of mitochondrial frataxin. Frataxin deficiency causes impairment in respiratory capacity, disruption of iron homoeostasis and hypersensitivity to oxidants. Although the redox properties of NAD (NAD+ and NADH) are essential for energy metabolism, only few results are available concerning homoeostasis of these nucleotides in frataxin-deficient cells. In the present study, we show that the malate-aspartate NADH shuttle is impaired in Saccharomyces cerevisiae frataxin-deficient cells (Δyfh1) due to decreased activity of cytosolic and mitochondrial isoforms of malate dehydrogenase and to complete inactivation of the mitochondrial aspartate aminotransferase (Aat1). A considerable decrease in the amount of mitochondrial acetylated proteins was observed in the Δyfh1 mutant compared with wild-type. Aat1 is acetylated in wild-type mitochondria and deacetylated in Δyfh1 mitochondria suggesting that inactivation could be due to this post-translational modification. Mutants deficient in iron-sulfur cluster assembly or lacking mitochondrial DNA also showed decreased activity of Aat1, suggesting that Aat1 inactivation was a secondary phenotype in Δyfh1 cells. Interestingly, deletion of the AAT1 gene in a wild-type strain caused respiratory deficiency and disruption of iron homoeostasis without any sensitivity to oxidative stress. Our results show that secondary inactivation of Aat1 contributes to the amplification of the respiratory defect observed in Δyfh1 cells. Further implication of mitochondrial protein deacetylation in the physiology of frataxin-deficient cells is anticipated.  相似文献   

9.
10.
Genetically encoded fluorescent sensors for intracellular NADH detection   总被引:2,自引:0,他引:2  
Zhao Y  Jin J  Hu Q  Zhou HM  Yi J  Yu Z  Xu L  Wang X  Yang Y  Loscalzo J 《Cell metabolism》2011,14(4):555-566
We have developed genetically encoded fluorescent sensors for reduced nicotinamide adenine dinucleotide (NADH), which manifest a large change in fluorescence upon NADH binding. We demonstrate the utility of these sensors in mammalian cells by monitoring the dynamic changes in NADH levels in subcellular organelles as affected by NADH transport, glucose metabolism, electron transport chain function, and redox environment, and we demonstrate the temporal separation of changes in mitochondrial and cytosolic NADH levels with perturbation. These results support the view that cytosolic NADH is sensitive to environmental changes, while mitochondria have a strong tendency to maintain physiological NADH homeostasis. These sensors provide a very good alternative to existing techniques that measure endogenous fluorescence of intracellular NAD(P)H and, owing to their superior sensitivity and specificity, allow for the selective monitoring of total cellular and compartmental responses of this essential cofactor.  相似文献   

11.
Increased neuronal cell death in neurodegenerative diseases has been suggested to result from an increased mitochondrial generation of radical oxygen species (ROS). To test this hypothesis, we investigated superoxide formation in cultured hippocampal neurons from diploid and trisomy 16 mice (Ts16), a model of Down's syndrome. Microflurometric techniques were used to measure superoxide-induced oxidation rate of hydroethidine (HEt) to ethidium and reduced nicotinamide adenine dinucleotide (NADH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) autofluorescence signal to monitor changes in neuronal energy metabolism. We found an increase in superoxide formation by more than 50% in Ts16 neurons in comparison with diploid control neurons. In the presence of the mitochondrial respiratory chain complex I inhibitor rotenone superoxide production was blocked in diploid neurons, but the increased superoxide generation in Ts16 neurons remained. Uncoupling of mitochondrial oxidative phosphorylation using carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused irreversible deficiency in the energy metabolism, monitored by NAD(P)H autofluorescence in Ts16 neurons, but not in diploid control neurons. These results suggest an increased basal generation of superoxide in Ts16 neurons, probably caused by a deficient complex I of mitochondrial electron transport chain, which leads to an impaired mitochondrial energy metabolism and finally neuronal cell death.  相似文献   

12.
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.  相似文献   

13.
Shen W  Wei Y  Dauk M  Tan Y  Taylor DC  Selvaraj G  Zou J 《The Plant cell》2006,18(2):422-441
A mitochondrial glycerol-3-phosphate (G-3-P) shuttle that channels cytosolic reducing equivalent to mitochondria for respiration through oxidoreduction of G-3-P has been extensively studied in yeast and animal systems. Here, we report evidence for the operation of such a shuttle in Arabidopsis thaliana. We studied Arabidopsis mutants defective in a cytosolic G-3-P dehydrogenase, GPDHc1, which, based on models described for other systems, functions as the cytosolic component of a G-3-P shuttle. We found that the gpdhc1 T-DNA insertional mutants exhibited increased NADH/NAD+ ratios compared with wild-type plants under standard growth conditions, as well as impaired adjustment of NADH/NAD+ ratios under stress simulated by abscisic acid treatment. The altered redox state of the NAD(H) pool was correlated with shifts in the profiles of metabolites concerning intracellular redox exchange. The impairment in maintaining cellular redox homeostasis was manifest by a higher steady state level of reactive oxygen species under standard growth conditions and by a significantly augmented hydrogen peroxide production under stress. Loss of GPDHc1 affected mitochondrial respiration, particularly through a diminished capacity of the alternative oxidase respiration pathway. We propose a model that outlines potential involvements of a mitochondrial G-3-P shuttle in plant cells for redox homeostasis.  相似文献   

14.
We characterized dopamine toxicity in human neuroblastoma SH-SY5Y cells as a direct effect of dopamine on cell reductive power, measured as NADH and NADPH cell content. In cell incubations with 100 or 500 microM dopamine, the accumulation of dopamine inside the cell reached a maximum after 6 h. The decrease in cell viability was 40% and 75%, respectively, after 24 h, and was not altered by MAO inhibition with tranylcypromine. Dopamine was metabolized to DOPAC by mitochondrial MAO and, at 500 microM concentration, significantly reduced mitochondrial potential and oxygen consumption. This DA concentration caused only a slight increase in cell peroxidation in the absence of Fe(III), but a dramatic decrease in NADH and NADPH cell content and a concomitant decrease in total cell NAD(P)H/NAD(P)+ and GSH/GSSG and in mitochondrial NADH/NAD+ ratios. Dopaminechrome, a product of dopamine oxidation, was found to be a MAO-A inhibitor and a strong oxidizer of NADH and NADPH in a cell-free system. We conclude that dopamine may affect NADH and NADPH oxidation directly. When the intracellular concentrations of NAD(P)H and oxidized dopamine are similar, NAD(P)H triggers a redox cycle with dopamine that leads to its own consumption. The time-course of NADH and NADPH oxidation by dopamine was assessed in cell-free assays: NAD(P)H concentration decreased at the same time as dopamine oxidation advanced. The break in cell redox equilibrium, not excluding the involvement of free oxygen radicals, could be sufficient to explain the toxicity of dopamine in dopaminergic neurons.  相似文献   

15.
Mitochondria-deficient cells (rho(o) cells) survive through enhanced glycolytic metabolism in the presence of pyruvate and uridine. The plasma membrane redox system (PMRS) contains several NAD(P)H-related enzymes and plays a key role in maintaining the levels of NAD(+)/NADH and reduced coenzyme Q. In this study, rho(o) cells were used to investigate how the PMRS is regulated under conditions of mitochondrial dysfunction. rho(o) cells exhibited a lower oxygen consumption rate and higher levels of lactate than parental cells, and were more sensitive to glycolysis inhibitors (2-deoxyglucose and iodoacetamide) than control cells. However, they were more resistant to H(2)O(2), consistent with increased catalase activity and decreased oxidative damage (protein carbonyls and nitrotyrosine). PM-associated redox enzyme activities were enhanced in rho(o) cells compared to those in control cells. Our data suggest that all PMRS enzymes and biomarkers tested are closely related to the ability of the PMs to maintain redox homeostasis. These results illustrate that an up-regulated PM redox activity can protect cells from oxidative stress as a result of an improved antioxidant capacity, and suggest a mechanism by which neurons adapt to conditions of impaired mitochondrial function.  相似文献   

16.
The view that mitochondrial electron transport is the only site of aerobic respiration and the primary bioenergetic pathway in mammalian cells is well established in the literature. Although this paradigm is widely accepted for most tissues, the situation is less clear for proliferating cells. Increasing evidence indicates that glycolytic ATP production contributes substantially to fulfilling the energy requirements of rapidly dividing somatic cells, many tumour cells, and self-renewing stem cells in hypoxic environments. Glycolytic cells have been shown to consume oxygen at the cell surface via plasma membrane electron transport (PMET), a process that oxidises intracellular NADH, supports glycolytic ATP production and may contribute to aerobic energy production. PMET, as determined by reduction of a cell-impermeable tetrazolium dye, is highly active in rapidly-dividing tumour cell lines, where it ameliorates intracellular reductive stress, originating from the mitochondrial TCA cycle. Thus, mitochondrial NADH production is linked to dye reduction outside the cell via the malate-aspartate shuttle. PMET activity increases several-fold under hypoxic conditions, consistent with the view that oxygen competes for electrons from this PMET system. In addition, rho(o) cells that lack mitochondrial electron transport are characterised by elevated PMET presumably to recycle NADH, a role traditionally assumed by lactate dehydrogenase. PMET presents an excellent target for developing novel anticancer drugs that exploit its unique plasma membrane localisation. We propose that PMET is a ubiquitous, high-capacity acute NADH redox-regulatory system responsible for maintaining the mitochondrial NADH/NAD+ ratio. Blocking this pathway compromises the viability of rapidly proliferating cells that rely on PMET.  相似文献   

17.
Microspectrofluorometry of cell coenzymes (NAD(P)H, flavins) in conjunction with sequential microinjections into the same cell of metabolites and modifiers, reveals aspects of the regulatory mechanisms of transient redox changes of mitochondrial and extramitochondrial nicotinamide adenine dinucleotides. The injection of ADP in the course of an NAD(P)H transient produced by glycolytic (e.g. glucose 6-phosphate, G6P) or mitochondrial (e.g. malate) substrate leads to sharp reoxidation (state III, Chance and Williams, 1955), followed by a spontaneous state III to IV transition, and an ultimate return to original redox steady state. The response to ADP alone is biphasic, i.e. a small oxidation-reduction transient followed by a larger reverse transient. Similarities between responses to injected ATP and ADP suggest possible intracellular interconversions. Sequential injections of glycolytic and Krebs cycle substrates into the same cell, produce a two-step NAD(P) response, possibly revealing the intracellular compartmentation of this coenzyme. A two-step NAD(P)H response to sequentially injected fructose 1,6-diphosphate and G6P indicates the dynamic or even structural compartmentation of glycolytic phosphate esters in separate intracellular pools. The intracellular regulation and compartmentation of bioenergetic pathways and cell-to-cell metabolic inhomogeneities provide the basis on which the quantitative biochemistry of the intact living cell may be reconciled with these in situ findings.  相似文献   

18.
Glucose-stimulated insulin secretion is a multistep process dependent on beta-cell metabolic flux. Our previous studies on intact pancreatic islets used two-photon NAD(P)H imaging as a quantitative measure of the combined redox signal from NADH and NADPH (referred to as NAD(P)H). These studies showed that pyruvate, a non-secretagogue, enters beta-cells and causes a transient rise in NAD(P)H. To further characterize the metabolic fate of pyruvate, we have now developed one-photon flavoprotein microscopy as a simultaneous assay of lipoamide dehydrogenase (LipDH) autofluorescence. This flavoprotein is in direct equilibrium with mitochondrial NADH. Hence, a comparison of LipDH and NAD(P)H autofluorescence provides a method to distinguish the production of NADH, NADPH, or both. Using this method, the glucose dose response is consistent with an increase in both NADH and NADPH. In contrast, the transient rise in NAD(P)H observed with pyruvate stimulation is not accompanied by a significant change in LipDH, which indicates that pyruvate raises cellular NADPH without raising NADH. In comparison, methyl pyruvate stimulated a robust NADH and NADPH response. These data provide new evidence that exogenous pyruvate does not induce a significant rise in mitochondrial NADH. This inability likely results in its failure to produce the ATP necessary for stimulated secretion of insulin. Overall, these data are consistent with either a restricted pyruvate dehydrogenase-dependent metabolism or a buffering of the NADH response by other metabolic mechanisms.  相似文献   

19.
Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the model simulations of exercise response are consistent with the hypothesis that mitochondrial NADH/NAD+ shuttling activity and muscle glycogen stores affect primarily the cytosolic redox state. Furthermore, muscle lactate production is regulated primarily by the cytosolic redox state.  相似文献   

20.
《BBA》2022,1863(3):148532
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the ‘respirasome free’ complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号