首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Down syndrome (DS) is a well‐known neurodevelopmental disorder most commonly caused by trisomy of chromosome 21. Because individuals with DS almost universally develop heavy amyloid burden and Alzheimer's disease (AD), biomarker discovery in this population may be extremely fruitful. Moreover, any AD biomarker in DS that does not directly involve amyloid pathology may be of high value for understanding broader mechanisms of AD generalizable to the neurotypical population. In this retrospective biomarker discovery study, we examined banked peripheral plasma samples from 78 individuals with DS who met clinical criteria for AD at the time of the blood draw (DS‐AD) and 68 individuals with DS who did not (DS‐NAD). We measured the relative abundance of approximately 5,000 putative features in the plasma using untargeted mass spectrometry (MS). We found significantly higher levels of a peak putatively annotated as lactic acid in the DS‐AD group (q = .014), a finding confirmed using targeted MS (q = .011). Because lactate is the terminal product of glycolysis and subsequent lactic acid fermentation, we performed additional targeted MS focusing on central carbon metabolism which revealed significantly increased levels of pyruvic (q = .03) and methyladipic (q = .03) acids in addition to significantly lower levels of uridine (q = .007) in the DS‐AD group. These data suggest that AD in DS is accompanied by a shift from aerobic respiration toward the less efficient fermentative metabolism and that bioenergetically derived metabolites observable in peripheral blood may be useful for detecting this shift.  相似文献   

2.
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two global epidemics that share several metabolic defects, such as insulin resistance, impaired glucose metabolism, and mitochondrial defects. Importantly, strong evidence demonstrates that T2D significantly increases the risk of cognitive decline and dementia, particularly AD. Here, we provide an overview of the metabolic defects that characterize and link both pathologies putting the focus on mitochondria. The biomarker potential of mitochondrial components and the therapeutic potential of some drugs that target and modulate mitochondria are also briefly discussed.  相似文献   

3.
In this review, we examine cardiovascular metabolism from three different, but highly complementary, perspectives. First, from the abstract perspective of a metabolite network, composed of nodes and links. We present fundamental concepts in network theory, including emergence, to illustrate how nature has designed metabolism with a hierarchal modular scale-free topology to provide a robust system of energy delivery. Second, from the physical perspective of a modular spatially compartmentalized network. We review evidence that cardiovascular metabolism is functionally compartmentalized, such that oxidative phosphorylation, glycolysis, and glycogenolysis preferentially channel ATP to ATPases in different cellular compartments, using creatine kinase and adenylate kinase to maximize efficient energy delivery. Third, from the dynamics perspective, as a network of dynamically interactive metabolic modules capable of self-oscillation. Whereas normally, cardiac metabolism exists in a regime in which excitation-metabolism coupling closely matches energy supply and demand, we describe how under stressful conditions, the network can be pushed into a qualitatively new dynamic regime, manifested as cell-wide oscillations in ATP levels, in which the coordination between energy supply and demand is lost. We speculate how this state of "metabolic fibrillation" leads to cell death if not corrected and discuss the implications for cardioprotection.  相似文献   

4.
Alzheimer's disease (AD) is the leading cause of dementia in the elderly. Despite decades of study, effective treatments for AD are lacking. Mitochondrial dysfunction has been closely linked to the pathogenesis of AD, but the relationship between mitochondrial pathology and neuronal damage is poorly understood. Sirtuins (SIRT, silent mating type information regulation 2 homolog in yeast) are NAD‐dependent histone deacetylases involved in aging and longevity. The objective of this study was to investigate the relationship between SIRT3 and mitochondrial function and neuronal activity in AD. SIRT3 mRNA and protein levels were significantly decreased in AD cerebral cortex, and Ac‐p53 K320 was significantly increased in AD mitochondria. SIRT3 prevented p53‐induced mitochondrial dysfunction and neuronal damage in a deacetylase activity‐dependent manner. Notably, mitochondrially targeted p53 (mito‐p53) directly reduced mitochondria DNA‐encoded ND2 and ND4 gene expression resulting in increased reactive oxygen species (ROS) and reduced mitochondrial oxygen consumption. ND2 and ND4 gene expressions were significantly decreased in patients with AD. p53‐ChIP analysis verified the presence of p53‐binding elements in the human mitochondrial genome and increased p53 occupancy of mitochondrial DNA in AD. SIRT3 overexpression restored the expression of ND2 and ND4 and improved mitochondrial oxygen consumption by repressing mito‐p53 activity. Our results indicate that SIRT3 dysfunction leads to p53‐mediated mitochondrial and neuronal damage in AD. Therapeutic modulation of SIRT3 activity may ameliorate mitochondrial pathology and neurodegeneration in AD.  相似文献   

5.
Alzheimer's disease is the most prevalent form of neurodegenerative disease. Despite many years of intensive research our understanding of the molecular events leading to this pathology is far from complete. No effective treatments have been defined and questions surround the validity and utility of existing animal models. The zebrafish (and, in particular, its embryos) is a malleable and accessible model possessing a vertebrate neural structure and genome. Zebrafish genes orthologous to those mutated in human familial Alzheimer's disease have been defined. Work in zebrafish has permitted discovery of unique characteristics of these genes that would have been difficult to observe with other models. In this brief review we give an overview of Alzheimer's disease and transgenic animal models before examining the current contribution of zebrafish to this research area. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

6.
Sphingolipids in the membranes of neurons play important roles in signal transduction, either by modulating the localization and activation of membrane-associated receptors or by acting as precursors of bioactive lipid mediators. Activation of cytokine and neurotrophic factor receptors coupled to sphingomyelinases results in the generation of ceramides and gangliosides, which in turn, modify the structural and functional plasticity of neurons. In aging and neurodegenerative conditions such as Alzheimer's disease (AD), there are increased membrane-associated oxidative stress and excessive production and accumulation of ceramides. Studies of brain tissue samples from human subjects, and of experimental models of the diseases, suggest that perturbed sphingomyelin metabolism is a pivotal event in the dysfunction and degeneration of neurons that occurs in AD and HIV dementia. Dietary and pharmacological interventions that target sphingolipid metabolism should be pursued for the prevention and treatment of neurodegenerative disorders.  相似文献   

7.
Recent studies show that in Alzheimer''s disease (AD), alterations in neurogenesis contribute to the neurodegenerative process. Neurodegeneration in AD has been associated with aberrant signaling through the cyclin-dependent kinase-5 (CDK5) pathway via its activators p35/p25; however, the role of CDK5 in the mechanisms of defective adult neurogenesis in AD is unknown. First, to study AD-like abnormal activation of CDK5 signaling in an in vitro model of neurogenesis, neuronal progenitor cells (NPCs) were infected with a viral vector expressing p35, and exposed to amyloid-β protein (Aβ1−42). These conditions resulted in impaired maturation and neurite outgrowth in vitro, and these effects were reversed by pharmacological or genetic inhibition of CDK5. Similarly, neurogenesis was impaired in a transgenic mouse model of AD that expresses high levels of amyloid precursor protein (APP), and this effect was reversed in transgenic mice crossed with a CDK5 heterozygous-deficient mouse line. A similar rescue effect was observed in APP transgenic mice treated with Roscovitine, a pharmacological inhibitor of CDK5. Taken together, these data suggest that the CDK5 signaling pathway has a critical role in maintaining the integrity of NPCs and neuronal maturation in the adult hippocampus. Moreover, potential therapeutic approaches could focus on modulating the aberrant activity of CDK5 to target the neurogenic and neurodegenerative alterations in AD.  相似文献   

8.
The redox co‐factor nicotinamide adenine dinucleotide (NAD) declines with age, and NAD deficits are specifically associated with dysfunctional energy metabolism in late‐onset Alzheimer''s disease (LOAD). Nicotinamide riboside (NR), a dietary NAD precursor, has been suggested to ameliorate the aging process or neurodegeneration. We assessed whether NR with or without caffeine, which increases nicotinamide mononucleotide transferase subtype 2 (NMNAT2), an essential enzyme in NAD production, modulates bioenergetic functions in LOAD. In LOAD patients—and young or old control individuals—derived dermal fibroblasts as well as in induced pluripotent stem cell‐differentiated neural progenitors and astrocytes, NR and caffeine cell type‐specifically increased the NAD pool, transiently enhanced mitochondrial respiration or glycolysis and altered the expression of genes in the NAD synthesis or consumption pathways. However, continued treatment led to reversed bioenergetic effects. Importantly, NR and caffeine did not alter the characteristics of a previously documented inherent LOAD‐associated bioenergetic phenotype. Thus, although NR and caffeine can partially restore diminished NAD availability, increasing NAD alone may not be sufficient to boost or restore energy metabolism in brain aging or alter aberrant energy management in LOAD. Nicotinamide riboside might still be of value in combination with other agents in preventive or therapeutic intervention strategies to address the aging process or age‐associated dementia.  相似文献   

9.
Adult neurogenesis occurs in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. This process is highly regulated by intrinsic and extrinsic factors, which may control the proliferation and/or maturation of neural progenitor cells. Adult-born neurons are integrated in preexisting networks and may have functional implications for adult brain. Here we attempt to summarize relevant findings concerning the physiological role of adult neurogenesis mainly focused on the subgranular zone, and to discuss the reduced neurogenesis observed during aging and the factors that have been involved in this phenomenon. Finally, we focus on hippocampal neurogenesis in Alzheimer's disease, reviewing animal models of the disease used for the study of this process and the conclusions that have been drawn in this context.  相似文献   

10.
Alzheimer's disease (AD) is the most common cause of dementia in the elderly and presents a great burden to sufferers and to society. The genetics of rare Mendelian forms of AD have been central to our understanding of AD pathogenesis for the past twenty years and now the genetics of the common form of the disease in the elderly is beginning to be unravelled by genome-wide association studies. Four new genes for common AD have been revealed in the past year, CLU, CR1, PICALM and BIN1. Their possible involvement in lipid metabolism and how that relates to AD is discussed here.  相似文献   

11.
12.
Rapp A  Gmeiner B  Hüttinger M 《Biochimie》2006,88(5):473-483
Apolipoprotein E (apoE) has been genetically linked to late-onset Alzheimer's disease. From the three common alleles (epsilon2, epsilon3 and epsilon4), epsilon4 has been suggested to promote amyloid beta (Ass) plaque fibrillation, one hallmark of Alzheimer's disease. It has been demonstrated that altered lipid content of hippocampal plasma membrane coincides with the disease. In this study, we show for the first time that the apoE dependent cholesterol metabolism in hippocampal neurons is higher than that of hippocampal astrocytes. Further, apoE-bound cholesterol is highly incorporated in membranous compartments in hippocampal neurons, whereas hippocampal astrocytes show higher intracellular distribution. This is an effect that coincides with cell-type dependent difference of low density lipoprotein receptor (LDLR) family member expression. Hippocampal neurons express high levels of the LDLR related protein (LRP), whereas hippocampal astrocytes are highly positive for LDLR. We could also demonstrate an apoE isoform (apoE2, apoE3 and apoE4) dependent cholesterol uptake in both cells types. In hippocampal neurons, we could find a decreased apoE4-bound cholesterol uptake. In contrast, hippocampal astrocytes show decreased internalization of apoE2-bound cholesterol. In addition, lipidated apoE4 is little associated with neurites in hippocampal neurons in comparison to the other two isoforms. In contrary, hippocampal astrocytes show faint apoE2 immunocytostaining intensity. Data presented indicate that the role of apoE4 in cholesterol homeostasis and apolipoprotein cell association is more pronounced in hippocampal neurons, showing significant alterations compared to the other two isoforms, suggesting that hippocampal neurons are affected by apoE4 associated altered cholesterol metabolism compared to hippocampal astrocytes.  相似文献   

13.
The precise causation of Alzheimer's disease (AD) is unknown, and the factors that contribute to its etiology are highly complicated. Numerous research has been conducted to investigate the potential impact of various factors to the risk of AD development or prevention against it. A growing body of evidence suggests to the importance of the gut microbiota-brain axis in the modulation of AD, which is characterized by altered gut microbiota composition. These changes can alter the production of microbial-derived metabolites, which may play a detrimental role in disease progression by being involved in cognitive decline, neurodegeneration, neuroinflammation, and accumulation of Aβ and tau. The focus of this review is on the relationship between the key metabolic products of the gut microbiota and AD pathogenesis in the brain. Understanding the action of microbial metabolites can open up new avenues for the development of AD treatment targets.  相似文献   

14.
Intracellular accumulation of oligomeric forms of β amyloid (Aβ) are now believed to play a key role in the earliest phase of Alzheimer's disease (AD) as their rise correlates well with the early symptoms of the disease. Extensive evidence points to impaired neuronal Ca2+ homeostasis as a direct consequence of the intracellular Aβ oligomers. However, little is known about the downstream effects of the resulting Ca2+ rise on the many intracellular Ca2+-dependent pathways. Here we use multiscale modeling in conjunction with patch-clamp electrophysiology of single inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and fluorescence imaging of whole-cell Ca2+ response, induced by exogenously applied intracellular Aβ42 oligomers to show that Aβ42 inflicts cytotoxicity by impairing mitochondrial function. Driven by patch-clamp experiments, we first model the kinetics of IP3R, which is then extended to build a model for the whole-cell Ca2+ signals. The whole-cell model is then fitted to fluorescence signals to quantify the overall Ca2+ release from the endoplasmic reticulum by intracellular Aβ42 oligomers through G-protein-mediated stimulation of IP3 production. The estimated IP3 concentration as a function of intracellular Aβ42 content together with the whole-cell model allows us to show that Aβ42 oligomers impair mitochondrial function through pathological Ca2+ uptake and the resulting reduced mitochondrial inner membrane potential, leading to an overall lower ATP and increased production of reactive oxygen species and H2O2. We further show that mitochondrial function can be restored by the addition of Ca2+ buffer EGTA, in accordance with the observed abrogation of Aβ42 cytotoxicity by EGTA in our live cells experiments.  相似文献   

15.
16.
17.
阿尔茨海默病(Alzheimer’s disease,AD)是一种老年人常见的神经系统退行性疾病,是痴呆最常见的病因。AD患者越来越多,给家属及社会带来严重负担造成了巨大的家庭和社会负担,这就迫使我们进一步探讨AD发病机制。在AD的众多发病机制中,tau蛋白假说倍受青睐。在蛋白磷酸酯酶2A(protein phosphatase 2A,PP2A)、糖原合酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)、细胞周期依赖性蛋白激酶-5(cyclin-dependent kinase 5,CDK-5)和Bcl-2等蛋白酶及调节蛋白作用下,微管相关蛋白tau蛋白以其异常磷酸化结构或是形成二聚体、寡聚体和神经原纤维缠结等形式,参与到AD的病理过程。Tau蛋白及其相关结构,可能启动或促进了AD的凋亡,亦可能抑制了急性凋亡却促进了慢性的神经细胞变性。揭开这一谜底,可能揭开AD病理改变的神秘面纱。  相似文献   

18.
Three neuropathological features attracted the attention of Alzheimer in his examination of the brain of Auguste Deter: abnormal fibrillary structures, cortical depositions now termed “plaques,” and glial proliferation, whereby he noted remarkable lipid granule accumulation in the glia. These features were also recorded by Perusini and Kraepelin, but by 1930 the lipoid deposits were no longer regarded by neuropathologists with great interest.  相似文献   

19.
Here we postulate that the adapter protein evolutionarily conserved signalling intermediate in Toll pathway (ECSIT) might act as a molecular sensor in the pathogenesis of Alzheimer's disease (AD). Based on the analysis of our AD-associated protein interaction network, ECSIT emerges as an integrating signalling hub that ascertains cell homeostasis by the specific activation of protective molecular mechanisms in response to signals of amyloid-beta or oxidative damage. This converges into a complex cascade of patho-physiological processes. A failure to repair would generate severe mitochondrial damage and ultimately activate pro-apoptotic mechanisms, promoting synaptic dysfunction and neuronal death. Further support for our hypothesis is provided by increasing evidence of mitochondrial dysfunction in the disease etiology. Our model integrates seemingly controversial hypotheses for familial and sporadic forms of AD and envisions ECSIT as a biomarker to guide future therapies to halt or prevent AD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号