首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 46 毫秒
1.
For over 20 years, peptide materials in their hydrogel or soluble fibril form have been used for biomedical applications such as drug delivery, cell culture, vaccines, and tissue regeneration. To facilitate the translation of these materials, key areas of research still need to be addressed. Their structural characterization lags compared to amyloid proteins. Many of the structural features designed to guide materials formation are primarily being characterized by their observation in atomic resolution structures of amyloid assemblies. Herein, these motifs are examined in relation to peptide designs identifying common interactions that drive assembly and provide structural specificity. Current efforts to design complex structures, as reviewed here, highlight the need to extend the structural revolution of amyloid proteins to peptide assemblies to validate design principles. With respect to clinical applications, the fundamental interactions and responses of proteins, cells, and the immune system to peptide materials are still not well understood. Only a few trends are just now emerging for peptide materials interactions with biological systems. Understanding how peptide material properties influence these interactions will enable the translation of materials towards current and emerging applications.  相似文献   

2.
We have measured the aqueous solution vibrational Raman optical activity (ROA) spectra of concanavalin A, alpha-chymotrypsin, and beta-lactoglobulin, all of which are rich in beta-sheet, together with that of the model beta-turn peptide L-pro-L-leu-gly-NH2. Possible ROA signatures of antiparallel beta-sheet include a strong sharp positive band at approximately 1,313 cm-1 associated with backbone amide III C alpha H and NH deformations, and an amide I couplet, negative at low wavenumber and positive at high, centered at approximately 1,658 cm-1. Negative ROA bands in the range approximately 1,340-1,380 cm-1, which might originate in glycine CH2 deformations, appear to be characteristic of beta-turns. Our results provide further evidence that ROA is a more incisive probe of protein conformation than conventional vibrational spectroscopy, infrared, or Raman, because only those few vibrational coordinates within a given normal mode that sample the skeletal chirality directly contribute to the corresponding ROA band intensity.  相似文献   

3.
Zhang B  Wustman BA  Morse D  Evans JS 《Biopolymers》2002,63(6):358-369
The lustrin superfamily represents a unique group of biomineralization proteins localized between layered aragonite mineral plates (i.e., nacre layer) in mollusk shell. Recent atomic force microscopy (AFM) pulling studies have demonstrated that the lustrin‐containing organic nacre layer in the abalone, Haliotis rufescens, exhibits a typical sawtooth force‐extension curve with hysteretic recovery. This force extension behavior is reminiscent of reversible unfolding and refolding in elastomeric proteins such as titin and tenascin. Since secondary structure plays an important role in force‐induced protein unfolding and refolding, the question is, What secondary structure(s) exist within the major domains of Lustrin A? Using a model peptide (FPGKNVNCTSGE) representing the 12‐residue consensus sequence found near the N‐termini of the first eight cysteine‐rich domains (C‐domains) within the Lustrin A protein, we employed CD, NMR spectroscopy, and simulated annealing/minimization to determine the secondary structure preferences for this sequence. At pH 7.4, we find that the 12‐mer sequence adopts a loop conformation, consisting of a “bend” or “turn” involving residues G3–K4 and N7–C8–T9, with extended conformations arising at F1–G3; K4–V6; T9–S10–G11 in the sequence. Minor pH‐dependent conformational effects were noted for this peptide; however, there is no evidence for a salt‐bridge interaction between the K4 and E12 side chains. The presence of a loop conformation within the highly conserved —PG—, —NVNCT— sequence of C1–C8 domains may have important structural and mechanistic implications for the Lustrin A protein with regard to elastic behavior. © 2002 Wiley Periodicals, Inc. Biopolymers 63: 358–369, 2002  相似文献   

4.
Conformational transitions of holo-α-lactalbumin in a hydro-ethanolic cosolvent system was studied by spectrofluorescence, CD in near- and far-uv regions, and high-sensitivity differential scanning calorimetry. Experimental results allow us to propose that in isothermal conditions α-lactalbumin undergoes a number of conformational transitions with increasing ethanol concentration: N ⇔ I ⇔ D ⇔ H . The existence of I -state was deduced from spectrofluorometric and near-uv CD data. In this state the aromatic chromophores of the amino acid side chains are more accessible to the solvent displaying higher local mobility. The H -state was detected from far-uv CD spectra as a state corresponding to the content of α-helices higher than originally found in native protein. However, calorimetric measurements provide data revealing only the two-state mechanism of α-lactalbumin unfolding in both water and in aqueous ethanol solutions. This indicates that the energy levels of N - and I -states as well as of D - and H -states are similar. Thermodynamics of the unfolding of α-lactalbumin in hydro-ethanolic solutions was analyzed with the help of the linear model of solvent denaturation. Unfolding increments of enthalpy, entropy, and Gibbs energy of transfer of the protein from a reference aqueous solution to hydro-ethanolic solutions of different concentrations were determined from the calorimetric data. They are linear functions of molar ethanol fraction. The slope of the unfolding increment of Gibbs energy of transfer was calculated from data on transfer of amino acid residues taking into account the average solvent accessibility of amino acid residues in the native structure of small globular proteins, using the additive group contribution method. © 1998 John Wiley & Sons, Inc. Biopoly 46: 253–265, 1998  相似文献   

5.
6.
Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with leaf angle control. Two sites with natural leaf positions had ground angles of 0° (‘level site’) and 45° (‘sloping site’), while at a third site the leaves were fixed in an angle of 45° to homogenize the irradiance dose (‘fixed leaf angle site’). The photosynthetic performance of the leaves was characterized by simultaneous gas exchange and chlorophyll fluorescence measurements and the PSII performance through the growing season was investigated with fluorescence measurements. Leaf harvest towards the end of the growing season was done to determine the specific leaf area and the content of carbon, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate of electron transport (Jmax) and the maximum carboxylation rate of Rubisco (Vcmax), and the PSII performance showed a decreased quantum yield and increased energy dissipation. A parallel response pattern and reduced PSII performance at all three sites indicate that these responses take place in all leaves across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland.  相似文献   

7.
The increase of chlorophyll fluorescence yield in chloroplasts in a 12.5 Hz train of saturating single turnover flashes and the kinetics of fluorescence yield decay after the last flash have been analyzed. The approximate twofold increase in Fm relative to Fo, reached after 30-40 flashes, is associated with a proportional change in the slow (1-20 s) component of the multiphasic decay. This component reflects the accumulation of a sizeable fraction of QB-nonreducing centers. It is hypothesized that the generation of these centers occurs in association with proton transport across the thylakoid membrane. The data are quantitatively consistent with a model in which the fluorescence quenching of QB-nonreducing centers is reversibly released after second excitation and electron trapping on the acceptor side of Photosystem II.  相似文献   

8.
Redox transients of chlorophyll P700, monitored as absorbance changes ΔA810, were measured during and after exclusive PSI excitation with far-red (FR) light in pea (Pisum sativum, cv. Premium) leaves under various pre-excitation conditions. Prolonged adaptation in the dark terminated by a short PSII + PSI− exciting light pulse guarantees pre-conditions in which the initial photochemical events in PSI RCs are carried out by cyclic electron transfer (CET). Pre-excitation with one or more 10 s FR pulses creates conditions for induction of linear electron transport (LET). These converse conditions give rise to totally different, but reproducible responses of P700 oxidation. System analyses of these responses were made based on quantitative solutions of the rate equations dictated by the associated reaction scheme for each of the relevant conditions. These provide the mathematical elements of the P700 induction algorithm (PIA) with which the distinguishable components of the P700+ response can be resolved and interpreted. It enables amongst others the interpretation and understanding of the characteristic kinetic profile of the P700+ response in intact leaves upon 10 s illumination with far-red light under the promotive condition for CET. The system analysis provides evidence that this unique kinetic pattern with a non-responsive delay followed by a steep S-shaped signal increase is caused by a photoelectrochemically controlled suppression of the electron transport from Fd to the PQ-reducing Qr site of the cytb6f complex in the cyclic pathway. The photoelectrochemical control is exerted by the PSI-powered proton pump associated with CET. It shows strong similarities with the photoelectrochemical control of LET at the acceptor side of PSII which is reflected by release of photoelectrochemical quenching of chlorophyll a fluorescence.  相似文献   

9.
Shiguo Chen 《BBA》2007,1767(4):306-318
Tenuazonic acid (TeA) is a natural phytotoxin produced by Alternaria alternata, the causal agent of brown leaf spot disease of Eupatorium adenophorum. Results from chlorophyll fluorescence revealed TeA can block electron flow from QA to QB at photosystem II acceptor side. Based on studies with D1-mutants of Chlamydomonas reinhardtii, the No. 256 amino acid plays a key role in TeA binding to the QB-niche. The results of competitive replacement with [14C]atrazine combined with JIP-test and D1-mutant showed that TeA should be considered as a new type of photosystem II inhibitor because it has a different binding behavior within QB-niche from other known photosystem II inhibitors. Bioassay of TeA and its analogues indicated 3-acyl-5-alkyltetramic and even tetramic acid compounds may represent a new structural framework for photosynthetic inhibitors.  相似文献   

10.
Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells. This study was carried out to determine the effect of different iron concentrations on the photosynthetic characteristics of sweet potato plants. The fluorescence transient of chlorophyll a (OJIP), chlorophyll index and gas exchange were measured in plants grown for seven days in Hoagland solution containing an iron concentration of 0.45, 0.90, 4.50 or 9.00 mM Fe (as Fe-EDTA). The initial and maximum fluorescence increased in the plants receiving 9.00 mM Fe. In the analysis of the fluorescence kinetic difference, L- and K-bands appeared in all of the treatments, but the amplitude was higher in plants receiving 4.50 or 9.00 mM Fe. In plants grown in 9.00 mM Fe, the parameters of the JIP-Test indicated a better efficiency in the capture, absorption and use of light energy, and although the chlorophyll index was higher, the net photosynthesis was lower. The overall data showed that sweet potato plants subjected to high iron concentrations may not exhibit the toxicity symptoms, but the light reactions of photosynthesis can be affect, which may result in a declining net assimilation rate.  相似文献   

11.
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier.  相似文献   

12.
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号