首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Teixobactin is a structurally and mechanistically novel antimicrobial peptide with potent activities against Gram-positive pathogens. It contains l-allo-enduracididine (End) residue which is not readily accessible. In this report, we have used convergent Ser Ligation as the key step to prepare a series of teixobactin analogues with End being substituted with its non-isostere moieties. Among these analogues, compounds T16, T27 and T29 exhibited the best antimicrobial activities against different Gram-positive bacteria with MICs ranging from 0.25 to 1.0?µM. Structure-activity relationship is also established for further development of more promising teixobactin analogues.  相似文献   

2.
In search for novel biologically active metal based compounds, an evaluation of in vitro cytotoxic, antioxidant, and antimicrobial activity of new Pt(II) complex and its Zn(II), Cu(II), and Co(III) analogues, with NNO tridentately coordinated N‐heteroaromatic Schiff base ligand (E)‐2‐[N′‐(1‐pyridin‐2‐yl‐ethylidene)hydrazino]acetate, was performed. Investigation of antioxidative properties showed that all of the compounds have strong radical scavenging potencies. The Zn(II) complex showed potent inhibition of DNA cleavage by hydroxyl radical. A cytotoxic action of investigated compounds was evaluated on cultures of human promyelocitic leukaemia (HL‐60), human glioma (U251), rat glioma (C6), and mouse melanoma (B16) cell lines. It was shown that binuclear pentacoordinated Zn(II) complex possesses a strong dose‐dependent cytotoxic activity, of the same order of magnitude as cisplatin on B16, C6, and U251 cells. Furthermore, Zn(II) complex causes oxidative stress‐induced apoptotic death of HL‐60 leukemic cells, associated with caspase activation, phosphatidylserine externalization, and DNA fragmentation.  相似文献   

3.
New N‐substituted‐2‐amino‐4,5,6,7‐tetrahydrothieno[2,3‐c]pyridine derivatives were synthesized employing a convenient one‐pot three‐component method and their structures were characterized by 1H‐NMR and single crystal X‐ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram‐positive (Sarcina lutea) and Gram‐negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram‐positive bacteria and the (R)‐enantiomers displayed a greater antimicrobial potency than their (S)‐counterparts. The structure–activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.  相似文献   

4.
In keeping with recent efforts to generate compounds for antibiotic and microbicide development, we focused on the creation of non‐natural organo‐peptide hybrids of antimicrobial peptide amides (KLK(L)nKLK‐NH2) derived from sapecin B and a self‐assembling oligoglycine organo‐peptide bolaphile containing an ω‐amino fatty acid residue. The hybrid organo‐peptide bolaphiles with two cationic KLK tripeptide motifs linked with an ω‐amino acid residue (penta‐, octa‐ or undecamethylene chain) maintained the self‐assembling properties of the root oligoglycine bolaphile. Electron microscopy clearly revealed complex supramolecular architectures for both sapecin B‐derived peptides and the hybrid analogues. FT‐IR spectroscopy indicated that the supramolecular structures were composed primarily of β‐sheets. CD revealed that the hybrid bolaphiles did not share the same secondary structures as the sapecin B peptides in solution. However, although secondary structures of antimicrobial peptides are central in the activity, the organo‐peptide bolaphiles also retained the potent antimicrobial activity of the leader sapecin B‐derived peptide against both Gram‐positive and Gram‐negative bacteria. In general, the hybrids were more selective than the sapecin B peptides, as they displayed little or no appreciable haemolytic activity. The results obtained herald a new approach for the design of purpose‐built hybrid organo‐peptide bolaphiles. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
In the present study, we report synthesis and biological evaluation of the N‐Boc‐protected tripeptides 4a–l and N‐For protected tripeptides 5a–l as new For‐Met‐Leu‐Phe‐OMe (fMLF‐OMe) analogues. All the new ligands are characterized by the C‐terminal Phe residue variously substituted at position 4 of the aromatic ring. The agonism of 5a–l and the antagonism of 4a–l (chemotaxis, superoxide anion production, lysozyme release as well as receptor binding affinity) have been examined on human neutrophils. No synthesized compounds has higher activity than the standard fMLF‐OMe tripeptide to stimulate chemotaxis, although compounds 5a and 5c with ‐CH3 and ‐C(CH3)3, respectively, in position 4 on the aromatic ring, are better than the standard tripeptide to stimulate the production of superoxide anion, in higher concentration. Compounds 4f and 4i , containing ‐F and ‐I in position 4, respectively, on the aromatic ring of phenylalanine, exhibit significant chemotactic antagonism. The influence of the different substitution at the position 4 on the aromatic ring of phenylalanine is discussed. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Lactoferricin (LfB) is a 25‐residue innate immunity peptide released by pepsin from the N‐terminal region of bovine lactoferrin. A smaller amidated peptide, LfB6 (RRWQWR‐NH2) retains antimicrobial activity and is thought to constitute the “antimicrobial active‐site” (Tomita, Acta Paediatr Jpn. 1994; 36 : 585–91). Here we report on N‐acylation of 1‐Me‐Trp5‐LfB6, Cn‐RRWQ[1‐Me‐W]R‐NH2, where Cn is an acyl chain having n = 0, 2, 4, 6 or 12 carbons. Tryptophan 5 (Trp5) was methylated to enhance membrane binding and to allow for selective deuteration at that position. Peptide/lipid interactions of Cn‐RRWQ[1‐Me‐W ]R‐NH2 (deuterated 1‐Me‐Trp5 underlined), were monitored by solid state 31P NMR and 2H NMR. The samples consisted of macroscopically oriented bilayers of mixed neutral (dimyristoylphosphatidylcholine, DMPC) and anionic (dimyristoylphosphatidylglycerol, DMPG) lipids in a 3:1 ratio with Cn‐RRWQ[&1‐Me‐W ]R‐NH2 peptides added at a 1:25 peptide to lipid ratio. 2H‐NMR spectra reveal that the acylated peptides are well aligned in DMPC:DMPG bilayers. The 2H NMR quadrupolar splittings suggest that the 1‐Me‐Trp is located in a motionally restricted environment, indicating partial alignment at the membrane interface. 31P‐NMR spectra reveal that the lipids are predominantly in a bilayer configuration, with little perturbation by the peptides. Methylation alone, in C0‐RRWQ[1‐Me‐W ]R‐NH2, resulted in a 3–4 fold increase in antimicrobial activity against E. coli. N‐acylation with a C12 fatty acid enhanced activity almost 90 fold. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
ArnA from Escherichia coli is a key enzyme involved in the formation of 4‐amino‐4‐deoxy‐l ‐arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram‐negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N‐ and C‐terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N10‐formyltetrahydrofolate. Here we describe the structure of the isolated N‐terminal domain of ArnA in complex with its UDP‐sugar substrate and N5‐formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.  相似文献   

8.
A series of peptide dendrimers and their conjugates with antimicrobial agent FMDP (N3‐(4‐methoxyfumaroyl)‐(S)‐2,3‐diamino‐propanoic acid) were synthesized. The obtained compounds were tested for the antibacterial and antifungal activity. All novel dendrimers displayed much better activity against the tested strains than FMDP itself. Moreover, their conjugates with FMDP also exhibited antimicrobial activity. The most promising molecules were tested against a broad selection of fungal strains. The analysis of their antifungal properties indicates that the examined molecules are efficient growth inhibitors of fluconazole‐resistant hospital‐acquired strains. Moreover, an application of amphiphilic branched peptides such as FMDP carriers suggests that transport mechanism involves more likely the cell membrane perturbation than the mediation of the specific transport proteins. The activity of obtained compounds strongly depends on the specific structure of the molecule.  相似文献   

9.
Thirteen new 3‐acetyl‐2,5‐disubstituted‐1,3,4‐oxadiazoline derivatives were synthesized from corresponding hydrazide‐hydrazones of isonicotinic acid in the reaction with acetic anhydride. The obtained compounds were identified with the use of spectral methods (IR, 1H‐NMR, 13C‐NMR, MS). In vitro antimicrobial activity screening of synthesized compounds against a panel of bacteria and fungi revealed interesting antibacterial and antifungal activity of tested 1,3,4‐oxadiazoline derivatives, which is comparable to that of commonly used antimicrobial agents.  相似文献   

10.
Structural modification of the peptide backbone via N‐methylation is a powerful tool to modulate the pharmacokinetic profile and biological activity of peptides. Here we describe a rapid and highly efficient microwave(MW)‐assisted Fmoc/tBu solid‐phase method to prepare short chain N‐methyl‐rich peptides, using Rink amide p‐methylbenzhydrylamine (MBHA) resin as solid‐phase support. This method produces peptides in high yield and purity, and reduces the time required for Fmoc‐N‐methyl amino acid coupling. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The most challenging target in the design of new antimicrobial agents is the development of antibiotic resistance. Antimicrobial peptides are good candidates as lead compounds for the development of novel anti‐infective drugs. Here we propose the sequential substitution of each Ala residue present in a lead peptide with known antimicrobial activity by specific amino acids, rationally chosen, that could enhance the activity of the resultant peptide. Taking the fragment 107–115 of the human lysozyme as lead, two‐round screening by sequentially replacing both Ala residues (108 and 111) by distinct amino acids resulted in a novel peptide with 4‐ and 20‐fold increased antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. These results reinforce the strategy proposed, which, in combination with simple and easy screening tools, will contribute to the rapid development of new therapeutic peptides required by the market. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of a series of N‐guanidinylated cyclic ureidopeptides, analogues of 1,4‐ureido‐deltorphin/dermorphine tetrapeptide is described. The δ‐ and μ‐opioid receptor affinity of new guanidinylated analogues and their non‐guanidinylated precursors was determined by the displacement radioligand binding experiments. Our results indicate that the guanidinylation of cyclic 1,4‐ureidodeltorphin peptide analogues does not exhibit a uniform influence on the opioid receptor binding properties, similarly as reported earlier for some linear peptides. All analogues were also tested for their in vitro resistance to proteolysis during incubation with large excess of chymotrypsin, pepsin, and papain by means of mass spectroscopy. Guanidinylated ureidopeptides 1G–4G showed mixed μ agonist/δ agonist properties and high enzymatic stability indicating their potential as therapeutic agents for treatment of pain. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Recent studies have demonstrated that the O‐antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N‐formylated sugars (3‐formamido‐3,6‐dideoxy‐d ‐glucose or 4‐formamido‐4,6‐dideoxy‐d ‐glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6‐dehydratase, a pyridoxal 5'‐phosphate or PLP‐dependent aminotransferase, and an N‐formyltransferase. To date, there have been no published reports of N‐formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N‐formyltransferase. Given that M. tuberculosis produces l ‐rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6‐dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N‐formylated sugar in M. tuberculosis, namely a PLP‐dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP‐4‐formamido‐4,6‐dideoxy‐d ‐glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.  相似文献   

14.
During this investigation, N,N′‐bis‐azidomethylamines, N,N′‐bis‐cyanomethylamine, new alkoxymethylamine and chiral derivatives, which are considered to be a new generation of multifunctional compounds, were synthesized, functional properties were investigated, and anticholinergic and antidiabetic properties of those compounds were studied through the laboratory tests, and it was approved that they contain physiologically active compounds rather than analogues. Novel N‐bis‐cyanomethylamine and alkoxymethylamine derivatives were effective inhibitors of the α‐glycosidase, cytosolic carbonic anhydrase I and II isoforms, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) with Ki values in the range of 0.15–13.31 nM for α‐glycosidase, 2.77–15.30 nM for human carbonic anhydrase isoenzymes I (hCA I), 3.12–21.90 nM for human carbonic anhydrase isoenzymes II (hCA II), 23.33–73.23 nM for AChE, and 3.84–48.41 nM for BChE, respectively. Indeed, the inhibition of these metabolic enzymes has been considered as a promising factor for pharmacologic intervention in a diversity of disturbances.  相似文献   

15.
A new series of coumarin‐3‐carboxamide‐N‐morpholine hybrids 5a – 5l was designed and synthesized as cholinesterases inhibitors. The synthetic approach for title compounds was started from the reaction between 2‐hydroxybenzaldehyde derivatives and Meldrum's acid to afford corresponding coumarin‐3‐carboxylic acids. Then, amidation of the latter compounds with 2‐morpholinoethylamine or N‐(3‐aminopropyl)morpholine led to the formation of the compounds 5a – 5l . The in vitro inhibition screen against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) revealed that most of the synthesized compounds had potent AChE inhibitory while their BuChE inhibitions are moderate to weak. Among them, propylmorpholine derivative 5g (N‐[3‐(morpholin‐4‐yl)propyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing an unsubstituted coumarin moiety and ethylmorpholine derivative 5d (6‐bromo‐N‐[2‐(morpholin‐4‐yl)ethyl]‐2‐oxo‐2H‐chromene‐3‐carboxamide) bearing a 6‐bromocoumarin moiety showed the most activity against AChE and BuChE, respectively. The inhibitory activity of compound 5g against AChE was 1.78 times more than that of rivastigmine and anti‐BuChE activity of compound 5d is approximately same as rivastigmine. Kinetic and docking studies confirmed the dual binding site ability of compound 5g to inhibit AChE.  相似文献   

16.
Temporin‐1Tl (TL) is a 13‐residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti‐inflammatory activity. To develop novel AMP with improved anti‐inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin‐resistant Staphylococcus aureus strains compared with TL. TL‐1 and TL‐4 showed a little increase in antimicrobial selectivity, while TL‐2 and TL‐3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti‐inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor‐α (TNF‐α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF‐α in lipopolysaccharide (LPS)‐stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti‐inflammatory activity is as follows: TL‐2 ≈ TL‐3 ≈ TL‐4 > TL‐1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti‐inflammatory activity. These results apparently suggest that the anti‐inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti‐inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram‐negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The overuse of antibiotics has resulted in the emergence of antibiotic‐resistant bacteria, which presents an urgent need for new antimicrobial agents. At present, antimicrobial peptides have attracted a great deal of attention from researchers. However, antimicrobial peptides often affect a broad range of microorganisms, including the normal flora in a host organism. In the present study, we designed a novel hybrid antimicrobial peptide, expressed the hybrid peptide, and studied its specific target. The hybrid peptide, named T‐catesbeianin‐1, which includes the FyuA‐binding domain of pesticin and the peptide catesbeianin‐1, was designed and expressed in Pichia pastoris X‐33. Then, we determined the antimicrobial activity, cytotoxicity, and specific target of the peptide. T‐catesbeianin‐1 has strong antimicrobial activity and binds to FyuA to inhibit or kill Escherichia coli present in clinical specimens and mixed‐species culture. In summary, these findings suggested that T‐catesbeianin‐1 might be promising and specific antibiotic agent for therapeutic application against fyuA+ E. coli.  相似文献   

18.
Herein, we make an effort to enhance the antimicrobial activity of levofloxacin (LVX) antibiotic via conjugation to a cell‐penetrating peptide (CPP) including Cys‐Gly‐Ala‐Phe‐Pro‐His‐Arg. For this purpose, cysteine is used as a linker between the LVX and CPP chain, and two heterogeneous nanoscale catalytic systems are employed as the substantial alternatives for traditional peptide coupling reagents like N,N,N′,N′‐tetramethyl‐O‐(benzotriazol‐1‐yl)uronium tetrafluoroborate (TBTU). Briefly, it has been found out that the antimicrobial potency of the synthesized CPP‐LVX conjugate (on the gram‐positive and gram‐negative bacteria) is noticeably enhanced (~20% more). It has been revealed via zone of inhibition (ZOI) and optical density (OD) evaluations. As a convenient method for making this type of the effective conjugations, ultrasound waves (with a specific frequency and power density) activate the catalytic sites of the heterogeneous nanoparticles. Through this synergistic effect, peptide/amide bond is formed during a short time (10 min), and high reaction yield (>90%) is obtained under mild conditions. Moreover, as a simple purification process, the catalyst nanoparticles are collected and separated through their high magnetic property.  相似文献   

19.
It looks that a new era of antimicrobial peptides (AMPs) started with the discovery of teixobactin, which is a “head to side-chain” cyclodepsipeptide. It was isolated from a soil gram-negative b-proteobacteria by means of a revolutionary technique. Since there, several groups have developed synthetic strategies for efficient synthesis of this peptide and its analogues as well. Herein, all chemistries reported as well as the biological activity of the analogues are analyzed. Finally, some inputs regarding new trends for the next generation of analogues are discussed.  相似文献   

20.
The increase in the resistance of pathogens, in particular Staphylococcus aureus, to the action of antibiotics necessitates the search for new readily available and non‐toxic drugs. In solving this problem, phenolic acylhydrazones have high potential. In this communication, the synthesis of quaternary ammonium compounds containing a differently substituted phenolic moiety has been performed. An initial study of antimicrobial activity showed that these compounds are highly selective against S. aureus and B. cereus. The highest activity (MIC 2.0 μm ) was shown by hydrazones containing a catechol fragment. These compounds are more than 3‐fold more active against S. aureus and 3–10‐fold more active against B. cereus than norfloxacin. Low hemolytic and high antioxidant activities of all new compounds were also established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号