首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology.  相似文献   

2.
In this article, we consider the role of heterogeneous nucleation in β‐amyloid aggregation. Heterogeneous nucleation is more common and occurs at lower levels of supersaturation than homogeneous nucleation. The nucleation period is also the stage at which most of the polymorphism of amyloids arises, this being one of the defining features of amyloids. We focus on several well‐known heterogeneous nucleators of β‐amyloid, including lipid surfaces, especially those enriched in gangliosides and cholesterol, and divalent metal ions. These two broad classes of nucleators affect β‐amyloid particularly in light of the amphiphilicity of these peptides: the N‐terminal region, which is largely polar and charged, contains the metal binding site, whereas the C‐terminal region is aliphatic and is important in lipid binding. Notably, these two classes of nucleators can interact cooperatively, aggregation begetting greater aggregation.  相似文献   

3.
4.
5.
6.
O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) is a widespread modification of serine/threonine residues of nucleocytoplasmic proteins. Recently, several key contractile proteins in rat skeletal muscle (i.e., myosin heavy and light chains and actin) were identified as O‐GlcNAc modified. Moreover, it was demonstrated that O‐GlcNAc moieties involved in contractile protein interactions could modulate Ca2+ activation parameters of contraction. In order to better understand how O‐GlcNAc can modulate the contractile activity of muscle fibers, we decided to identify the sites of O‐GlcNAc modification in purified contractile protein homogenates. Using an MS‐based method that relies on mild β‐elimination followed by Michael addition of DTT (BEMAD), we determined the localization of one O‐GlcNAc site in the subdomain four of actin and four O‐GlcNAc sites in the light meromyosin region of myosin heavy chains (MHC). According to previous reports concerning the role of these regions, our data suggest that O‐GlcNAc sites might modulate the actin–tropomyosin interaction, and be involved in MHC polymerization or interactions between MHC and other contractile proteins. Thus, the results suggest that this PTM might be involved in protein–protein interactions but could also modulate the contractile properties of skeletal muscle.  相似文献   

7.
8.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   

9.
The main purpose of this study was to evaluate whether donepezil, acetylcholinesterase inhibitor, shown to play a protective role through inhibiting glycogen synthesis kinase‐3β (GSK‐3β) activity, could also exert neuroprotective effects by stimulating protein phosphatase 2A (PP2A) activity in the amyloid‐beta (Aβ)42‐induced neuronal toxicity model of Alzheimer's disease. In Aβ42‐induced toxic conditions, each PP2A and GSK‐3β activity measured at different times showed time‐dependent reverse pattern toward the direction of accelerating neuronal deaths with the passage of time. In addition, donepezil pre‐treatment showed dose‐dependent stepwise increase of neuronal viability and stimulation of PP2A activity. However, such effects on them were significantly reduced through the depletion of PP2A activity with either okadaic acid or PP2Ac siRNA. In spite of blocked PP2A activity in this Aβ42 insult, however, donepezil pretreatment showed additional significant recovering effect on neuronal viability when compared to the value without donepezil. Moreover, donepezil partially recovered its dephosphorylating effect on hyperphosphorylated tau induced by Aβ42. This observation led us to assume that additional mechanisms of donepezil, including its inhibitory effect on GSK‐3β activity and/or the activation role of nicotinic acetylcholine receptors (nAChRs), might be involved. Taken together, our results suggest that the neuroprotective effects of donepezil against Aβ42‐induced neurotoxicity are mediated through activation of PP2A, but its additional mechanisms including regulation of GSK‐3β and nAChRs activity would partially contribute to its effects.

  相似文献   


10.
11.
β‐Secretase (BACE1) cleavage of the amyloid precursor protein (APP) represents the initial step in the formation of the Alzheimer's disease associated amyloidogenic Aβ peptide. Substantive evidence indicates that APP processing by BACE1 is dependent on intracellular sorting of this enzyme. Nonetheless, knowledge of the intracellular trafficking pathway of internalised BACE1 remains in doubt. Here we show that cell surface BACE1 is rapidly internalised by the AP2/clathrin dependent pathway in transfected cells and traffics to early endosomes and Rab11‐positive, juxtanuclear recycling endosomes, with very little transported to the TGN as has been previously suggested. Moreover, BACE1 is predominantly localised to the early and recycling endosome compartments in different cell types, including neuronal cells. In contrast, the majority of internalised wild‐type APP traffics to late endosomes/lysosomes. To explore the relevance of the itinerary of BACE1 on APP processing, we generated a BACE1 chimera containing the cytoplasmic tail of TGN38 (BACE/TGN38), which cycles between the cell surface and TGN in an AP2‐dependent manner. Wild‐type BACE1 is less efficient in Aβ production than the BACE/TGN38 chimera, highlighting the relevance of the itinerary of BACE1 on APP processing. Overall the data suggests that internalised BACE1 and APP diverge at early endosomes and that Aβ biogenesis is regulated in part by the recycling itinerary of BACE1.  相似文献   

12.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

13.
14.
15.
16.
Amyloid‐β peptide (Aβ) generation initiated by β‐site amyloid precursor protein cleaving enzyme 1 BACE1 is a critical cause of Alzheimer's disease. In the course of our ongoing investigation of natural anti‐dementia resources, the ethyl acetate (EtOAc) fraction exerted strong BACE1‐specific inhibition with the half maximal inhibitory concentration (IC50) value of 9.2 × 10?5 μg/mL. Furthermore, Aβ(25–35)‐induced cell death was predominantly prevented by the EtOAc fraction of Allomyrina dichotoma larvae through diminishing of cellular oxidative stress and attenuating apoptosis by inhibiting caspase‐3 activity. Taken together, the present study demonstrated that A. dichotoma larvae possess novel neuroprotective properties not only via the selective and specific inhibition of BACE1 activity but also through the alleviation of Aβ(25–35)‐induced toxicity, which may raise the possibility of therapeutic application of A. dichotoma larvae for preventing and/or treating dementia.  相似文献   

17.
18.
Alzheimer's disease is the most common form of dementia in humans and is related to the accumulation of the amyloid‐β (Aβ) peptide and its interaction with metals (Cu, Fe, and Zn) in the brain. Crystallographic structural information about Aβ peptide deposits and the details of the metal‐binding site is limited owing to the heterogeneous nature of aggregation states formed by the peptide. Here, we present a crystal structure of Aβ residues 1–16 fused to the N‐terminus of the Escherichia coli immunity protein Im7, and stabilized with the fragment antigen binding fragment of the anti‐Aβ N‐terminal antibody WO2. The structure demonstrates that Aβ residues 10–16, which are not in complex with the antibody, adopt a mixture of local polyproline II‐helix and turn type conformations, enhancing cooperativity between the two adjacent histidine residues His13 and His14. Furthermore, this relatively rigid region of Aβ (residues, 10–16) appear as an almost independent unit available for trapping metal ions and provides a rationale for the His13‐metal‐His14 coordination in the Aβ1–16 fragment implicated in Aβ metal binding. This novel structure, therefore, has the potential to provide a foundation for investigating the effect of metal ion binding to Aβ and illustrates a potential target for the development of future Alzheimer's disease therapeutics aimed at stabilizing the N‐terminal monomer structure, in particular residues His13 and His14, and preventing Aβ metal‐binding‐induced neurotoxicity.Proteins 2013; 81:1748–1758. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Raloxifene, a selective estrogen receptor modulator, displays benefits for Alzheimer's disease (AD) prevention in postmenopausal women as hormonal changes during menopause have the potential to influence AD pathogenesis, but the underlying mechanism of its neuroprotection is not entirely clear. In this study, the effects of raloxifene on amyloid‐β (Aβ) amyloidogenesis were evaluated. The results demonstrated that raloxifene inhibits Aβ42 aggregation and destabilizes preformed Aβ42 fibrils through directly interacting with the N‐terminus and middle domains of Aβ42 peptides. Consequently, raloxifene not only reduces direct toxicity of Aβ42 in HT22 neuronal cells, but also suppresses expressions of tumor necrosis factor‐α and transforming growth factor‐β induced by Aβ42 peptides, and then alleviates microglia‐mediated indirect toxicity of Aβ42 to HT22 neuronal cells. Our results suggested an alternative possible explanation for the neuroprotective activity of raloxifene in AD prevention.  相似文献   

20.
An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27‐hydroxycholesterol (27‐OH) and 24‐hydroxycholesterol (24‐OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK‐N‐BE human neuroblastoma cells with patho‐physiologically relevant amounts of 27‐OH and 24‐OH showed that both oxysterols induce a net synthesis of Aβ1‐42 by up‐regulating expression levels of amyloid precursor protein and β‐secretase, as well as the β‐secretase activity. Interestingly, cell pretreatment with N‐acetyl‐cysteine (NAC) fully prevented the enhancement of β‐amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive β‐amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols‐induced Aβ toxic peptide accumulation in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号