首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome‐level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole‐genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired‐end sequencing, 10X Genomics linked reads and high‐throughput chromatin conformation capture (Hi‐C) genome scaffolding techniques, a 141.01‐megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single‐Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second‐stage juveniles (J2), third‐stage juveniles (J3) and fourth‐stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high‐quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN–plant interactions and co‐evolution, and also contribute to the development of technology for overall SCN management.  相似文献   

2.
Bivalves, a highly diverse and the most evolutionarily successful class of invertebrates native to aquatic habitats, provide valuable molecular resources for understanding the evolutionary adaptation and aquatic ecology. Here, we reported a high‐quality chromosome‐level genome assembly of the razor clam Sinonovacula constricta using Pacific Bioscience single‐molecule real‐time sequencing, Illumina paired‐end sequencing, 10X Genomics linked‐reads and Hi‐C reads. The genome size was 1,220.85 Mb, containing scaffold N50 of 65.93 Mb and contig N50 of 976.94 Kb. A total of 899 complete (91.92%) and seven partial (0.72%) matches of the 978 metazoa Benchmarking Universal Single‐Copy Orthologs were determined in this genome assembly. And Hi‐C scaffolding of the genome resulted in 19 pseudochromosomes. A total of 28,594 protein‐coding genes were predicted in the S. constricta genome, of which 25,413 genes (88.88%) were functionally annotated. In addition, 39.79% of the assembled genome was composed of repetitive sequences, and 4,372 noncoding RNAs were identified. The enrichment analyses of the significantly expanded and contracted genes suggested an evolutionary adaptation of S. constricta to highly stressful living environments. In summary, the genomic resources generated in this work not only provide a valuable reference genome for investigating the molecular mechanisms of S. constricta biological functions and evolutionary adaptation, but also facilitate its genetic improvement and disease treatment. Meanwhile, the obtained genome greatly improves our understanding of the genetics of molluscs and their comparative evolution.  相似文献   

3.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

4.
5.
The brown planthopper Nilaparvata lugens, white‐backed planthopper Sogatella furcifera, and small brown planthopper Laodelphax striatellus are three major insect pests of rice. They are genetically close; however, they differ in several ecological traits such as host range, migration capacity, and in their sex chromosomes. Though the draft genome of these three planthoppers have been previously released, the quality of genome assemblies need to be improved. The absence of chromosome‐level genome resources has hindered in‐depth research of these three species. Here, we performed a de novo genome assembly for N. lugens to increase its genome assembly quality with PacBio and Illumina platforms, increasing the contig N50 to 589.46 Kb. Then, with the new N. lugens genome and previously reported S. furcifera and L. striatellus genome assemblies, we generated chromosome‐level scaffold assemblies of these three planthopper species using HiC scaffolding technique. The scaffold N50s significantly increased to 77.63 Mb, 43.36 Mb and 29.24 Mb for N. lugens, S. furcifera and L. striatellus, respectively. To identify sex chromosomes of these three planthopper species, we carried out genome re‐sequencing of males and females and successfully determined the X and Y chromosomes for N. lugens, and X chromosome for S. furcifera and L. striatellus. The gene content of the sex chromosomes showed high diversity among these three planthoppers suggesting the rapid evolution of sex‐linked genes, and all chromosomes showed high synteny. The chromosome‐level genome assemblies of three planthoppers would provide a valuable resource for a broad range of future research in molecular ecology, and subsequently benefits development of modern pest control strategies.  相似文献   

6.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

7.
Dendrolimus spp. are important destructive pests of conifer forests, and Dendrolimus punctatus Walker (Lepidoptera; Lasiocampidae) is the most widely distributed Dendrolimus species. During periodic outbreaks, this species is said to make “fire without smoke” because large areas of pine forest can be quickly and heavily damaged. Yet, little is known about the molecular mechanisms that underlie the unique ecological characteristics of this forest insect. Here, we combined Pacific Biosciences (PacBio) RSII single‐molecule long reads and high‐throughput chromosome conformation capture (Hi‐C) genomics‐linked reads to produce a high‐quality, chromosome‐level reference genome for D. punctatus. The final assembly was 614 Mb with contig and scaffold N50 values of 1.39 and 22.15 Mb, respectively, and 96.96% of the contigs anchored onto 30 chromosomes. Based on the prediction, this genome contained 17,593 protein‐coding genes and 56.16% repetitive sequences. Phylogenetic analyses indicated that D. punctatus diverged from the common ancestor of Hyphantria cunea, Spodoptera litura and Thaumetopoea pityocampa ~ 108.91 million years ago. Many gene families that were expanded in the D. punctatus genome were significantly enriched for the xenobiotic biodegradation system, especially the cytochrome P450 gene family. This high‐quality, chromosome‐level reference genome will be a valuable resource for understanding mechanisms of D. punctatus outbreak and host resistance adaption. Because this is the first Lasiocampidae insect genome to be sequenced, it also will serve as a reference for further comparative genomics.  相似文献   

8.
The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole‐genome shotgun (WGS) approach, without the use of costly and time‐consuming methods, such as fosmid or BAC clone‐based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS‐FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired‐end and mate‐pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired‐end reads and contaminants detected, resulting in a total of 17 910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.  相似文献   

9.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   

10.
Yak is an important livestock animal for the people indigenous to the harsh, oxygen‐limited Qinghai‐Tibetan Plateau and Hindu Kush ranges of the Himalayas. The yak genome was sequenced in 2012, but its assembly was fragmented because of the inherent limitations of the Illumina sequencing technology used to analyse it. An accurate and complete reference genome is essential for the study of genetic variations in this species. Long‐read sequences are more complete than their short‐read counterparts and have been successfully applied towards high‐quality genome assembly for various species. In this study, we present a high‐quality chromosome‐scale yak genome assembly (BosGru_PB_v1.0) constructed with long‐read sequencing and chromatin interaction technologies. Compared to an existing yak genome assembly (BosGru_v2.0), BosGru_PB_v1.0 shows substantially improved chromosome sequence continuity, reduced repetitive structure ambiguity, and gene model completeness. To characterize genetic variation in yak, we generated de novo genome assemblies based on Illumina short reads for seven recognized domestic yak breeds in Tibet and Sichuan and one wild yak from Hoh Xil. We compared these eight assemblies to the BosGru_PB_v1.0 genome, obtained a comprehensive map of yak genetic diversity at the whole‐genome level, and identified several protein‐coding genes absent from the BosGru_PB_v1.0 assembly. Despite the genetic bottleneck experienced by wild yak, their diversity was nonetheless higher than that of domestic yak. Here, we identified breed‐specific sequences and genes by whole‐genome alignment, which may facilitate yak breed identification.  相似文献   

11.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

12.
Symbiotic relationships between vestimentiferan tubeworms and chemosynthetic Gammaproteobacteria build the foundations of many hydrothermal vent and hydrocarbon seep ecosystems in the deep sea. The association between the vent tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has become a model system for symbiosis research in deep‐sea vestimentiferans, while markedly fewer studies have investigated symbiotic relationships in other tubeworm species, especially at cold seeps. Here we sequenced the endosymbiont genome of the tubeworm Lamellibrachia barhami from a cold seep in the Gulf of California, using short‐ and long‐read sequencing technologies in combination with Hi‐C and Dovetail Chicago libraries. Our final assembly had a size of ~4.17 MB, a GC content of 54.54%, 137X coverage, 4153 coding sequences, and a CheckM completeness score of 97.19%. A single scaffold contained 99.51% of the genome. Comparative genomic analyses indicated that the L. barhami symbiont shares a set of core genes and many metabolic pathways with other vestimentiferan symbionts, while containing 433 unique gene clusters that comprised a variety of transposases, defence‐related genes and a lineage‐specific CRISPR/Cas3 system. This assembly represents the most contiguous tubeworm symbiont genome resource to date and will be particularly valuable for future comparative genomic studies investigating structural genome evolution, physiological adaptations and host‐symbiont communication in chemosynthetic animal‐microbe symbioses.  相似文献   

13.
Salmonids are of particular interest to evolutionary biologists due to their incredible diversity of life‐history strategies and the speed at which many salmonid species have diversified. In Switzerland alone, over 30 species of Alpine whitefish from the subfamily Coregoninae have evolved since the last glacial maximum, with species exhibiting a diverse range of morphological and behavioural phenotypes. This, combined with the whole genome duplication which occurred in the ancestor of all salmonids, makes the Alpine whitefish radiation a particularly interesting system in which to study the genetic basis of adaptation and speciation and the impacts of ploidy changes and subsequent rediploidization on genome evolution. Although well‐curated genome assemblies exist for many species within Salmonidae, genomic resources for the subfamily Coregoninae are lacking. To assemble a whitefish reference genome, we carried out PacBio sequencing from one wild‐caught Coregonus sp. “Balchen” from Lake Thun to ~90× coverage. PacBio reads were assembled independently using three different assemblers, falcon , canu and wtdbg2 and subsequently scaffolded with additional Hi‐C data. All three assemblies were highly contiguous, had strong synteny to a previously published Coregonus linkage map, and when mapping additional short‐read data to each of the assemblies, coverage was fairly even across most chromosome‐scale scaffolds. Here, we present the first de novo genome assembly for the Salmonid subfamily Coregoninae. The final 2.2‐Gb wtdbg2 assembly included 40 scaffolds, an N50 of 51.9 Mb and was 93.3% complete for BUSCOs. The assembly consisted of ~52% transposable elements and contained 44,525 genes.  相似文献   

14.
15.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   

16.
Accurate and complete genome sequences are essential in biotechnology to facilitate genome‐based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short‐read‐based assemblies. Here, we completely resequenced C. griseus using single molecule real time sequencing and merged this with Illumina‐based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28‐fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up‐ and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important Chinese hamster ovary cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.  相似文献   

17.
Casuarina equisetifolia (C. equisetifolia), a conifer‐like angiosperm with resistance to typhoon and stress tolerance, is mainly cultivated in the coastal areas of Australasia. C. equisetifolia, making it a valuable model to study secondary growth associated genes and stress‐tolerance traits. However, the genome sequence is unavailable and therefore wood‐associated growth rate and stress resistance at the molecular level is largely unexplored. We therefore constructed a high‐quality draft genome sequence of C. equisetifolia by a combination of Illumina second‐generation sequencing reads and Pacific Biosciences single‐molecule real‐time (SMRT) long reads to advance the investigation of this species. Here, we report the genome assembly, which contains approximately 300 megabases (Mb) and scaffold size of N50 is 1.06 Mb. Additionally, gene annotation, assisted by a combination of prediction and RNA‐seq data, generated 29 827 annotated protein‐coding genes and 1983 non‐coding genes, respectively. Furthermore, we found that the total number of repetitive sequences account for one‐third of the genome assembly. Here we also construct the genome‐wide map of DNA modification, such as two novel forms N6‐adenine (6mA) and N4‐methylcytosine (4mC) at the level of single‐nucleotide resolution using single‐molecule real‐time (SMRT) sequencing. Interestingly, we found that 17% of 6mA modification genes and 15% of 4mC modification genes also included alternative splicing events. Finally, we investigated cellulose, hemicellulose, and lignin‐related genes, which were associated with secondary growth and contained different DNA modifications. The high‐quality genome sequence and annotation of C. equisetifolia in this study provide a valuable resource to strengthen our understanding of the diverse traits of trees.  相似文献   

18.
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome‐level genome assembly of WAA—representing the first genome sequence from the aphid subfamily Eriosomatinae—using a combination of 10X Genomics linked‐reads and in vivo Hi‐C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein‐coding genes. The assembly is highly complete, including 97% of conserved arthropod single‐copy orthologues based on Benchmarking Universal Single‐Copy Orthologs (busco ) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high‐quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect–plant interactions and pest resistance management.  相似文献   

19.
20.

Background

DNA sequencing technologies deviate from the ideal uniform distribution of reads. These biases impair scientific and medical applications. Accordingly, we have developed computational methods for discovering, describing and measuring bias.

Results

We applied these methods to the Illumina, Ion Torrent, Pacific Biosciences and Complete Genomics sequencing platforms, using data from human and from a set of microbes with diverse base compositions. As in previous work, library construction conditions significantly influence sequencing bias. Pacific Biosciences coverage levels are the least biased, followed by Illumina, although all technologies exhibit error-rate biases in high- and low-GC regions and at long homopolymer runs. The GC-rich regions prone to low coverage include a number of human promoters, so we therefore catalog 1,000 that were exceptionally resistant to sequencing. Our results indicate that combining data from two technologies can reduce coverage bias if the biases in the component technologies are complementary and of similar magnitude. Analysis of Illumina data representing 120-fold coverage of a well-studied human sample reveals that 0.20% of the autosomal genome was covered at less than 10% of the genome-wide average. Excluding locations that were similar to known bias motifs or likely due to sample-reference variations left only 0.045% of the autosomal genome with unexplained poor coverage.

Conclusions

The assays presented in this paper provide a comprehensive view of sequencing bias, which can be used to drive laboratory improvements and to monitor production processes. Development guided by these assays should result in improved genome assemblies and better coverage of biologically important loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号